

Environmental Statement: Volume III

Appendix 11D: Phase 2 Interpretative Report

VPI Immingham Energy Park

Phase 2
Geotechnical & Geo-environmental Interpretative Report

VPI Immingham LLP

Project number: 60569745

31/08/2018

Quality information

Prepared by	Checked by	Verified by	Approved by
Dan Maher/Reza Vand	David Rosenberg/ Ben Braund	Dr Lawrence Bowden /Ed Brook	David Cragg
DM/RV	DR/BB	LB/EB	DC

Revision History

Revision	Revision date	Details	Authorized	Name	Position
Rev01	24/8/18	Issue 01	DC	D Cragg	Technical Director
Rev 02	19/9/18	Issue 02	DC	D Cragg	Technical Director

Distribution List

# Hard Copies	PDF Required	Association / Company Name
-	Х	Vitol Power International

Prepared for: Vitol Power International

Prepared by:

AECOM Infrastructure & Environment UK Limited 5th Floor, 2 City Walk Leeds LS11 9AR United Kingdom

T: +44 (0)113 391 6800 aecom.com

Limitations

AECOM Infrastructure & Environment UK Limited ("AECOM") has prepared this Report for the sole use of **Vitol Power International** ("Client") in accordance with the terms and conditions of appointment (**Project number: 60569745**) dated **24/08/2018**. No other warranty, expressed or implied, is made as to the professional advice included in this Report or any other services provided by AECOM. This Report may not be relied upon by any other party without the prior and express written agreement of AECOM.

Where any conclusions and recommendations contained in this Report are based upon information provided by others, it has been assumed that all relevant information has been provided by those parties and that such information is accurate. Any such information obtained by AECOM has not been independently verified by AECOM, unless otherwise stated in the Report. AECOM accepts no liability for any inaccurate conclusions, assumptions or actions taken resulting from any inaccurate information supplied to AECOM from others.

The methodology adopted and the sources of information used by AECOM in providing its services are outlined in this Report. The work described in this Report was undertaken between [10/4/18] and [31/8/18] and is based on the conditions encountered and the information available during the said period of time. The scope of this Report and the services are accordingly factually limited by these circumstances. AECOM disclaim any undertaking or obligation to advise any person of any change in any matter affecting the Report, which may come or be brought to AECOM's attention after the date of the Report.

The exploratory holes carried out during the fieldwork, which investigate only a small volume of the ground in relation to the size of the site, can only provide a general indication of site conditions. The comments made and recommendations given in this Report are based on the ground conditions apparent at the site of the exploratory holes. There may be exceptional ground conditions elsewhere on the site which have not been disclosed by this investigation and which have therefore not been taken into account in this Report.

The comments made on groundwater conditions are based on observations made during site work and the limited monitoring programme. It should be noted that groundwater levels might vary owing to seasonal or other effects.

The site reconnaissance consisted of a general external inspection of the site aimed at identifying any obvious signs of geotechnical hazards and potential sources of ground contamination affecting the site.

Any risks identified in this Report are perceived risks, based on the information reviewed during the desk study and therefore partially based on conjecture from available information. The study is limited by the non-intrusive nature of the work and actual risks can only be assessed following a physical investigation of the site.

The investigation itself was designed generally to meet the objectives of an exploratory investigation, as defined by BS10175:2011 Investigation of Potentially Contaminated Sites: Code of Practice (BSI). As an exploratory, the results may not provide sufficient data to make detailed estimates of the quantities involved in any remediation work, if required.

The opinions expressed in this Report concerning any contamination found and the risks arising there from are based on current good practice simple statistical assessment and comparison with available soil guideline values, AECOM generic assessment criteria and other guidance values.

It should be noted that the effects of ground and water borne contamination on the environment are constantly under review, and authoritative guidance values are potentially subject to change. The conclusions presented herein are based on the guidance values available at the time this Report was prepared, however, no liability by AECOM can be accepted for the retrospective effects of any changes or amendments to these values.

© This Report is the copyright of AECOM. Any unauthorised reproduction or usage by any person other than the addressee is strictly prohibited.]¹

Table of Contents

1.	Introdu	uction	4
	1.1	Terms of Appointment	4
	1.2	Background	4
	1.3	Scope and objective of the report	4
	1.4	Proposed Intrusive Investigation	4
2.	Existin	g Information	6
	2.1	Site Description	6
	2.2	Anticipated Geology	6
	2.3	Hydrogeology and Hydrology	7
	2.4	Regulatory Database Review	8
	2.5	Sensitive Land Uses	9
	2.6	Statutory Consultations.	9
3.	Prelim	inary Conceptual Site Model	.10
	3.1	Assessment Framework	. 10
	3.2	Potential Sources of Contamination	.10
	3.3	Contaminants of Concern	. 11
	3.4	Potential Pathways	.13
	3.5	Potential receptors	.13
	3.6	Preliminary Risk Evaluation	.14
	3.7	Summary of Potential Pollutant Linkages	.14
4.	Fieldw	ork	.16
	4.1	Ground investigations	.16
	4.2	Ground Investigation Factual Report	. 17
	4.3	Post Ground Investigation.	. 17
5.	Groun	d Summary	.18
	5.1	Summary of Ground Conditions	.18
6.	Geote	chnical Parameters	.20
	6.1	Made Ground	. 20
	6.2	Glacial Till	.21
	6.3	Burnham Chalk Formation	.23
	6.4	Groundwater Strikes	. 24
	6.5	Groundwater monitoring	. 25
	6.6	Concrete Aggressivity	. 26
7.	Contai	mination Assessment	. 27
	7.1	Sample Analysis	. 27
	7.2	Stage 2 Risk Assessment	. 28
	7.3	Revised Conceptual Site Model	.34
	7.4	Summary of Contaminant Linkages	. 39
8.	Geote	chnical Assessment	. 40
	8.1	Proposed Works	. 40
	8.2	Engineering Assessment	.40
9.	Geote	chnical Risk Register	. 42
	9.1	Assessing Geotechnical Risk	.42
	9.2	Geotechnical Hazards	.42
10.	Refere	nces	. 44
Appen	dix A S	ite Location Plan/ Proposed site layout Plan	. 45
Appen	dix B R	isk Assessment Principles	. 46
Appen	dix C F	actual Report	. 47
Appen	dix D L	aboratory Certifications	. 48
Appen	dix E G	as and Groundwater Monitoring Results	. 49

Appendix F Parametric Study Charts	50
Appendix G Contamination Assessments	51

Glossary of Terms

AC:	Aggressive Chemical Environmental for Concrete Class,
ACEC:	Aggressive Chemical Environmental for Concrete,
BGS:	British Geological Survey,
BH:	Borehole,
CBR:	California Bearing Ratio,
CEMP:	Construction Environmental Management Plan,
CFA:	Continuous Flight Auger,
CHP:	Combined Heat and Plant,
CS:	Characteristic Situation,
CU:	Consolidated Triaxial Test,
DOC:	Dissolved Organic Carbon,
DS:	Design Sulphate,
DWS:	Drinking Water Standard,
EQS:	Environmental Quality Standard for controlled waters
GAC:	Generic Assessment Criteria,
GQRA	Generic Quantitative Risk Assessment,
HC:	Hydraulic Cell,
INDEX:	Classification tests, including moisture content, Atterberg limits,
LPG:	Liquid Petroleum Gas,
M bgl:	Metres Below Grounds Level,
M OD:	Metre Above Ordnance Datum,
OCGT:	Open Cycle Gas Turbine,
OD:	Ordnance Datum,
OED:	Consolidation Tests,
ORP:	Oxidation-Reduction Potential,
PAH:	Polyaromatic Hydrocarbons,
PID:	Photo Ionisation Detector,
PCB:,	Polychlorinated Biphenyl
PPE:	Personal Protective Equipment,
PSD:	Particle Size Distribution,
SPT:	Standard Penetration Testing,
SVOCs	Semi Volatile Organic Compounds,
TP:	Trial Pit,
TICs:	Tentatively Identified Compounds,
TOC:	Total Organic Carbon,
TPHs:	Total Petroleum Hydrocarbons,
TPH-CWG	Total Petroleum Hydrocarbons- Criteria Working Group,
TT:	Trial Trench,
UU:	Unconsolidated undrained triaxial test,
UXO:	Unexploded Ordnance,
VOCs:	Volatile Organic Compounds,
WTV:	Water Target Value,
WS:	Window Sample Hole,

EXECUTIVE SUMMARY

Conclusions

Recommendations

Ground Conditions

The results of the 2018 ground investigation by SOCOTEC UK Ltd shows that the site consists of up to 1.7m thickness of variable cohesive and granular Made Ground, underlain by cohesive Glacial Till with occasional layers of Glacial Sands and Gravels. The cohesive Glacial Till is typically described as firm to stiff, sandy, gravelly, clay with a low to medium compressibility index. A number of boreholes encountered highly weathered chalk from the Burnham Chalk Formation between the depths of 21.5m bgl and 27.5m bgl. Without geotechnical laboratory testing information available for the chalk formation, it is not possible to provide characteristic parameters.

Borehole records and in-situ tests for the cohesive and granular Made Ground show that the material is highly variable and conservatively classified as soft or loose.

As a conservative assumption, the occasional Glacial Sands and Gravels layers have not been included in the parameter determination process. Borehole descriptions and geotechnical tests show that the Glacial Till is firm, becoming very stiff with depth material. Depending on the foundation solution and limiting criteria, the Glacial Till can be deemed as a relatively competent material.

Further assessments can be undertaken at specific locations within the site to refine the engineering parameters and ground models presented in this report.

Caution should be taken when selecting engineering and construction solutions which interact with the Made Ground material. The performance of structures founded in made ground is difficult to predict due to its variable nature.

Should engineering solutions, such as piles, need to penetrate the Burnham Chalk Formation, further GI information will be required to develop a safe design.

Building Foundations

Both spread and piled foundation solutions may be considered for the proposed structures for the site. Foundation selection will depend on proposed loadings, foundation geometry and structural tolerance to total and differential settlement. Bearing resistance and tolerance to settlement will need to be considered for any spread foundations. Spread foundations should be located within natural ground below any fill or Made Ground, and founded below the depth of effect of variations due to vegetation, seasonal and climatic change.

Piled foundations may be considered for structures depending on proposed loadings, foundation geometry or where settlement tolerances is an issue, or where spread foundations are found to be unsuitable. Piles may derive capacity from a combination of skin friction and end bearing in the superficial soils.

Two design approaches can be adopted for piled foundations; placing the buildings on individual pile caps/rafts or creating a piled raft to cover large sections of the site. A piled raft will require a larger quantity of construction work but will ensure a stable design which will limit differential settlements between the buildings.

When considering shallow foundations, any soft, loose or deleterious deposits encountered at formation level should be removed and backfilled with suitable engineered fill or mass concrete.

Should the piles need to penetrate the Burnham Chalk Formation, further GI information will be required to develop a safe design.

Continuous Flight Auger (CFA) would be the preferred piling method for the assessed ground conditions. However, advice should be obtained from a specialist piling contractor before confirming a final design.

Project number: 60569745

Individual pile caps/rafts for separate buildings will allow for more flexibility in the pile design and enable costs to be optimised.

Excavations & Earthworks

Soft, loose or deleterious material will require to be removed from under proposed structures.

Considering the variable groundwater levels obtained from installations within the superficial deposits, and in view of the likelihood that long term equilibrium groundwater levels have not been recorded during the brief monitoring period, provision should be made for pumping from sumps to control ingress of groundwater into excavations in the event that water bearing granular bodies are encountered.

Excavation should be possible using conventional site plant.

All excavations should be battered back to a safe angle as determined on site or be provided with close/continuous support and or stabilisation measures. Any temporary excavated slopes which are likely to receive fill are to be benched prior to filling.

If earthworks are proposed it is recommended that slope stability analyses are undertaken at detailed design stage to establish maximum permissible slope angles.

It is recommended that provision is made for pumping from sumps to control ingress of groundwater into excavations in the event that water bearing granular bodies are encountered

Retaining Walls

Similar to spread foundations, foundations for retaining walls should be located within natural ground below any fill and Made Ground.

If any soft, loose or deleterious deposits are encountered at foundation and or formation level, these should be removed and backfilled with well compacted suitable engineered fill or mass concrete.

Due to the low permeability of the Glacial Tills, it is possible that the equilibrium water levels within the standpipes have not yet been reached, therefore a conservative approach is recommended for the selection of design groundwater levels for retaining wall design.

Groundwater levels should continue to be monitored at monthly intervals to determine equilibrium levels and seasonal variations prior to detailed design.

Adequate drainage measures to the rear of retaining walls should be designed to prevent the build-up of water pressure against the retaining walls.

Infrastructure

Levels of Sulphate and pH which can aggressively attack concrete have been identified for the section.

Potentially toxic and corrosive chemicals and elements have been encountered in both total soils testing and leachate samples taken in this section that may pose a risk to new/ diverted water supply pipes.

The recommended design class sulphate and ACEC Classification for various concrete structures are presented below

Stratum	Undisturbed ground Classification	Disturbed ground Classification
Made Ground	DS-2, AC-2	DS-2, AC-2
Glacial Deposits	DS-1, AC-1	DS-3, AC-3

Advice should be sought from United Utilities, including completing their risk assessment process, to assist in the specification of drinking water supply pipes prior to installation.

Prepared for: VPI Immingham LLP AECOM

Reuse of

material

Imported

Materials

No remedial actions are required to protect current Risk assessment based on conservative assumptions Human site users or future site users from substances in the does not indicate any risk to human health for the Health soils. The stage 2 risk assessment does not assess current or proposed land use. the specific risks to construction workers, but An appropriate CEMP and the use of standard PPE will appropriate PPE and CEMP precautions will be be sufficient to protect construction workers from contact sufficient to mitigate risk to construction works. with substances present in the soil, given the concentrations encountered during the investigation Assessment of risks to controlled waters from leachable No remedial measures are required on site to protect controlled waters. However any piles should be (soluble) concentrations of potentially polluting substances in soil, when compared conservatively designed in accordance with the EA guidance Groundwater against DWS and EQS, show a number of exceedances. entitled Piling and Penetrative Ground However, this is not reflected in the groundwater below Improvement Methods on Land the site and the distance to sensitive surface waters Affected by Contamination: makes the possibility of harm to sensitive controlled Guidance on Pollution Prevention (2001) waters from leachable soil substances unlikely. There are concentrations above the relevant screening criteria for a variety of contaminants in the soils below the site and deep foundations may create pathways through less permeable layers from the unsaturated zone to sensitive groundwater below. However the risks associated with deep foundations can be mitigated by means of risk assessment specific to the design and construction proposals. preliminary assessment of measured **Ground Gas** Where required ground gas protection measures as concentrations and flow rates in accordance with defined in BS8485 should be incorporated in the BS8485:20015 has determined that the overall buildings. 'Characteristic Gas Classification' for the site is Category 2.. This is a category defining a low to moderate risk Standard good health and safety practice and PPE which would necessitate a relatively low level of should be specified within the Construction Phase protection against the ingress of gas to confined spaces Plan in order to protect construction workers from in the development. gas within confined spaces. Bs8485 provides guidance on the design of protective measures against the ingress of ground gas based upon a system of scores related to the level of risk prevalent at the site. It is considered that in accordance with published guidance and BS8485, the majority of the proposed power generation plant and buildings on site would fall into a Type D industrial style buildings which for a CS2 will require gas protection sufficient to reach a score of 1.5.. However any smaller ancillary buildings will be classified as type C which will require measures sufficient to achieve a score of 2.5. However if Made Ground is removed as part of the preconstruction works the site would classify as CS1 where no protection measures are required. The Humber Estuary and Rosper Road Pools represent Although it is not considered the site is a significant **Ecological** ecological receptors, but the distance to the receptor is risk to statutory ecological receptors . a landscape Receptors such that harm is unlikely to be caused. architected should be provided with the chemical analysis in order to establish suitable plant species for the site. Material encountered during construction works that

AECOM Prepared for: VPI Immingham LLP

is considered to be potentially contaminated through

visual or olfactory evidence, or different to that assessed in the ground investigation will require chemical testing to confirm suitability for reuse.

Imported material (e.g. fill, etc.) will require chemical

and geotechnical testing before being brought onto

site to demonstrate that it is suitable for use. The testing suite and frequency, along with validation requirements, should be agreed with the Contaminated land Officer at the Local Authority

prior to importation of material.

Project number: 60569745

Project number: 60569745

1. Introduction

1.1 Terms of Appointment

AECOM were appointed by VPI Immingham LLP to undertake works comprising a ground investigation and interpretive report as described in the Ground investigation Fee Proposal Dated 02/03/18.

1.2 Background

The current Vitol Power International (VPI) Immingham LLP Combined Heat and Power plant (CHP) has been operational since 2004. The CHP plant produces steam which is supplied to the nearby Humber and Lindsey Oil Refineries. : It is understood that the CHP will be extended to the north of the site for the development of several gas fired power generation and storage projects including reciprocating engines and an Open Cycle Gas Turbine (OCGT) plant.. The development land is occupied by a car park and an area of open, hummocky land occupied by several vegetated mounds and ponded water in wet periods. The site location can be found in, and the proposed development can be found in Appendix A.

1.3 Scope and objective of the report

This Phase 2 Ground Investigation is concerned with the ground conditions at the proposed construction site of a new power generation and plant and buildings adjacent to the Humber and Lindsey Oil Refineries at Immingham, Humberside.

A ground investigation was undertaken to assist with the design of the proposals, including laboratory testing to determine soil properties and the installation of monitoring instruments to determine groundwater behaviour.

AECOM was commissioned by VPI Immingham LLP to provide design, management and full time technical oversight of the ground investigation works, which were completed by Socotec in April 2018; and to provide an interpretative and advisory report on the ground conditions in relation to development proposals.

The Ground Investigation comprised cable percussion and rotary drilled boreholes, trial pits and laboratory testing. The investigation was performed in accordance with the contract specification, and the general requirements of Eurocode 7, BS5930 (5930)and BS EN ISO 22475-1 (2006).

Following receipt of Socotec's factual report and the results of the laboratory testing, AECOM prepared a draft Geo-environmental and Geotechnical Interpretative Report. This includes an initial assessment of the results of the geotechnical testing and a discussion of possible foundation solutions and highways and pavement specification. The results of contamination testing of soil and groundwater samples have been screened against Stage 2 generic assessment criteria for human health and controlled waters receptors and provides an update to the conceptual site model outlined in the AECOM report "VPI Immingham Phase I Geo-environmental Assessment" (June 2017,).

1.4 Proposed Intrusive Investigation

Based on the findings of the Phase 1 desk study report and our understanding of the objectives for the site investigation and proposed redevelopment at the site, AECOM proposed the following scope for the ground investigation;

- GPR survey to make sure that the proposed exploratory locations were free from services;
- Drilling of six cable percussion boreholes to bedrock with potential follow on rotary coring to obtain samples
 of soil and rock for analysis of chemical and geotechnical properties, and installation of groundwater
 monitoring wells;
- Drilling of up to eight windowless samples into the underlying glacial till using dynamic sampling techniques
 to obtain in situ data, i.e. standard penetration testing (SPT), soil samples for chemical analysis and
 installation of gas/ groundwater wells;

Prepared for: VPI Immingham LLP AECOM

- Excavation of up to ten trial pits and three trial trenches across the site to investigate potential made ground deposits present at the site including two large stockpiles;
- Installation of up to fourteen gas / groundwater monitoring wells;
- Logging of boreholes and trial pits in accordance with Eurocode 7;
- Headspace analysis of VOCs using a portable ionisation detector (PID);
- Well development to purge water and fines entrained in the filter pack during drilling;
- Completion of three gas / groundwater monitoring events including collection of groundwater samples;
- Analysis of soil and groundwater samples for a range of determinands and potential contaminants including heavy metals, Polycyclic Aromatic Hydrocarbons (PAHs), Total Petroleum Hydrocarbons Criteria Working Group, (TPH-CWG), asbestos, Volatile Organic Compounds (VOCs) and semi-Volatile Organic Compounds (SVOCs), major anions, and organic matter;
- Provisional characterisation of soils in stockpiles to assess waste classification in the event that offsite disposal is required;
- Analysis of soil and groundwater samples for analysis of BRE suite to assess concrete classification;
- Laboratory testing of soil and rock strength parameters, likely to include plasticity limits, particle size
 distribution, bulk and dry density testing, compaction and triaxial compression testing, and point load
 testing. The exact nature of the testing will be subject to the ground conditions encountered;
- Preparation of a factual site investigation report, detailing the works completed and including logs, photos and laboratory data;

Following receipt of the Factual Report from Socotec prepare a Phase 2 interpretative report including;

- a detailed reassessment of the initial Conceptual Site Model (CSM), pollutant linkages and preliminary risk assessment, and an estimation and characterisation of the risks to a potential site development from contamination;
- outline recommendations for risk mitigation;
- identify need for additional investigation or remediation.

2. Existing Information

Existing information is discussed in the AECOM report "VPI Immingham Phase I Geo-environmental Assessment", and is summarised here.

2.1 Site Description

The site is located off Rosper Road, Immingham, North East Lincolnshire (see Appendix A, Figure 1), and is approximately 2 km east of South Killingholme. The site is centred on National Grid Reference (NGR) TA 516641 618468.

The site is surrounded by a mix of industrial and agricultural land use, namely the Lindsey Oil Refinery to the North West, which is operated by Total Ltd. To the South West is the Phillips 66 Humber refinery. Directly to the east is agricultural land and the River Humber is located approximately 1.3km from the site. The current VPI Immingham site is located directly to the south of the proposed development site.

2.1.1 Site Layout

The site occupies a total area of approximately 5 hectares (ha). The northern area of the site is currently occupied by a car park and canteen building present in the northwest which may be removed prior to construction. The southern half of site is covered in shrubbery/ grassland and contains various stockpiles believed to be from previous development including construction on the refinery land. The site is bounded to the east by Rosper Road and to the south by the current VPI Immingham CHP plant. Immingham Port is located approximately 2.5km to the South East and the River Humber is located approximately 1.3km to the east.

2.1.2 Surrounding Land Use

Based on site reconnaissance the land use immediately surrounding the site was assessed and is summarised below:

- North: Directly north of the site there is an access road which links the Lindsey Oil Refinery and Rosper Road. Beyond this, various utility buildings belonging to the Oil Refinery as well as unoccupied parcels of land are present.
- East: An unnamed drain and Rosper Road are directly east of the site, beyond which there are agricultural
- West: To the west of the site mapping shows a settling tank, pond, electricity pylon as well as a railway track linking into the Lindsey Oil Refinery
- South: A utility line containing gas and liquid hydrocarbon pipes is present to the south, separating the site and the current VPI Immingham CHP plant.

2.2 Anticipated Geology

The anticipated geology of the site was assessed through examination of Groundsure Geolnsight Report GS-3982431, publically available BGS borehole data and examination of historic reports made available to AECOM. Table 1 details existing ground investigations which have taken place on the site.

Table 1. Previous Ground Investigations Reports

Contractor/ Consultant	Investigation Description	Date
Soil Mechanics	Interpretive Report on Ground Investigation 6 cable percussion boreholes (BH1 to 6) to a maximum depth of 25 m and 10 trial pits (TP1-3, CBR2, 3, 5, 7,9,10 &13) to a maximum depth of 2 m	2006
ABB	Surrender of Waste Management Licence 13 trial pits (TP4-16) and drilling of 3 boreholes (done by Soil Mechanics; BH3-BH5). Groundwater sampling was also taken from existing monitoring wells (BH7 & BH8) installed in 1991.	

Table 2 summarises the anticipated geological conditions underlying the site based on the data reviewed.

Table 2. Summary of Geological Sequence

Strata	Depth (m OD)	Thickness (m)	Comment	Source
Made Ground		Unknown	"Soft to firm brown slightly sandy slightly gravelly clay with bands of soft black slightly sandy slightly gravelly clay. Gravel is subangular to subrounded fine to medium of various lithologies including chalk and pottery."	
Glacial Deposits		16-26	"slightly sandy, slightly gravelly clay. The sand and gravel component comprises subangular to subrounded chalk, occasionally sandstone and shell fragments."	
Burnham Chalk		Unknown	"White, thinly-bedded chalk with common tabular and discontinuous flint bands; sporadic marl seams"	BGS Lexicon

2.3 Hydrogeology and Hydrology

A review of Ordnance Survey maps indicated that the site is located approximately 1.3km south west of the River Humber, which flows north west to south east. Drains run along the southern and western site boundaries, and a small water storage pond is located approximately 80m west of the site. The Humber River is a designated Ramsar site, meaning that extra precautions are needed to safeguard hydrological features.

The site is located within an area whereby the Environment Agency issue flood warnings, and flood risk zone 3, meaning there is a high (greater than 1 in 100) annual probability of flooding. Flood defences are located along the banks of the River Humber and the area falls under the jurisdiction of North East Lindsey Internal Drainage Board.

Inspection of the Environment Agency Groundwater Vulnerability Maps indicates that:

• The superficial glacial deposits are classified as a 'Secondary Aquifer (undifferentiated)', defined either as 'permeable layers capable of supporting water supplies at a local rather than strategic scale, and in some cases forming an important source of base flow to rivers', or 'lower permeability layers which may store and yield limited amounts of groundwater due to localised features such as fissures, thin permeable horizons and weathering'.

The bedrock, Burnham Chalk Formation, is classified as a Principal Aquifer, defined as 'highly permeable
formations usually with a known or probable presence of significant fracturing. They may be highly
productive and able to support large abstractions for public supply and other purposes.

2.4 Regulatory Database Review

A Groundsure Envirolnsight Report was commissioned to evaluate any regulatory activities in the surrounding area which may have the potential to adversely affect the site. An initial Unexploded Ordinance report was also commissioned. The results of these searches are summarised below in Table 3 a plan showing the location can be found in the Groundsure Envirolnsight Report 3982431.

Table 3. Summary of Regulatory Database Search

CATEGORY	SUMMARY OF INFORMATION (<500m)	
Part A(1) and IPPC Authorised Activities	1 effective: 270m south east; and 8 superseded: 270m south east all relating to Immingham CHP	
List 1 Dangerous Substances Inventory Sites	1 inactive: 470m south east for Mercury and Cadmium relating to the Phillips 66 Humber Refinery site;	
List 2 Dangerous Substance Inventory Sites	1 active: 470m south east for arsenic, chromium, copper, lead, nickel and zinc relating to the Phillips 66 Humber Refinery site;	
Licensed Discharge Consents	3 revoked: one 51m south (relating to the Lindsey oil refinery oil interceptor) and two other unspecified trade discharges 470m south; and	
	1 effective: 50m north east; relating to sewage discharge from Lindsey oil refinery.	
Planning Hazardous Substance Consents and Enforcements	1 approved active consents: 130m south relating to VPI Immingham – Consent to store 3050 tonnes of petroleum gas oil.	
Dangerous or Hazardous Sites	1 on site current COMAH site (lower tier) relating to VPI Immingham CHP	
	2 off site current COMAH sites (both upper tier) relating to the Total Lindsey Oil Refinery (100m north east) and Phillips 66 Humber refinery (370m south)	
	1 off site historic NIHHS site (430m south relating to Conoco Manufacturing Ltd)	
	1 off site historic COMAH site relating to Humber LPG terminal Ltd (450 m east)	
EA Recorded Pollution Incidents List 2	2 recorded:	
	140m south east – minor impact to air (atmospheric pollutants and effects)	
	400m south - minor impact to land & air (Oils and Fuels).	
EA Recorded Pollution Incidents List 1	1 recorded 400m south of site relating to major persistent and extensive impacts to water (East Halton Beck).	
Environment Agency/Natural Resources Wales historic landfill sites	1 on-site historic landfill licence relating to liquid sludge from the Lindsey Oil Refinery.	
Environment Agency/Natural Resources Wales licensed waste sites	1 surrendered license 40m north west of the site relating to a biological treatment facility operated by the Lindsey Oil Refinery	

Prepared for: VPI Immingham LLP AECOM

CATEGORY

SUMMARY OF INFORMATION (<500m)

Preliminary Unexploded Ordnance Risk Assessment	Indicative British/Allied UXO Risk: Negligible	
(UXO) by Zetica	Indicative German UXO Risk: Low	

No other database entries were identified within 500m of the site boundary. Database listings reviewed included: Historic IPC Authorisations, Red List Discharge Consent Register Part A(2) and Part B Activities and Enforcements, Category 3 or 4 Radioactive Substances Authorisations, Water Industry Referrals, Sites Determined as Contaminated land (Part 2a) or Petrol & fuel sites.

2.5 Sensitive Land Uses

A Groundsure Envirolnsight Report was commissioned to evaluate the presence of environmentally sensitive sites or land uses in the surrounding area which may be affected by activity at the site. In addition, online resources such as the Natural England MAGIC database were also consulted. The results of these searches are summarised below in Table 4.

Table 4. Summary of Sensitive Land Uses (<2000m)

Land use/Site/Designation	Name	Distance
Sites of Special Scientific Interest (SSSI)	Humber Estuary N. Killingholme Haven Pits	1313m NE 1917m N
National Nature Reserves (NNR)	None	N/A
Special Areas of Conservation (SAC)	Humber Estuary	1313m NE
Ramsar Sites	Humber Estuary	1313m NE
Ancient Woodland	None	N/A
Local Nature Reserves (LNR)	None	N/A
World Heritage Site	None	N/A
Areas of Outstanding Natural Beauty (AONB)	None	N/A
National Parks (NP)	None	N/A

Source: Groundsure Envirolnsight Report No. GS-3982430

Rosper Road Pool approximately 600m south east of this site is labelled as a Local Nature reserve on Current Ordnance Survey Mapping although a check on the DEFRA website indicates it is not officially recognised as a Local Nature Reserve.

2.6 Statutory Consultations

No statutory consultations were required in order to undertake the ground investigation. Further consultations may be required before the construction phase.

3. Preliminary Conceptual Site Model

As part of the AECOM report "VPI Immingham Phase I Geo-environmental Assessment", a conceptual site model was developed to identify potential source- pathways- receptor linkages that may exist on the site. These linkages informed the conceptual site model and in turn informed the design of the ground investigation. The conceptual site model from the "VPI Immingham Phase I Geo-environmental Assessment" is presented here

3.1 Assessment Framework

The site, in terms of potential land contamination, will be regulated by the local authority (North Lincolnshire County Council) under the Town and Country Planning Act 1990 (as amended), taking account of the National Planning Policy Framework 2012, with the Environment Agency, Natural England and English Heritage acting as statutory consultees.

The 'suitable for use' approach is adopted for the assessment of contaminated land where remedial measures are only undertaken where unacceptable risks to human health or the environment are realised taking into account the use (or proposed use) of the land in question and the environmental setting.

Additional environmental liabilities can arise through provisions contained within statutory legislation including Part 2A of the EPA 1990, the Water Resources Act 1991, the Groundwater Regulations 2009 and the Water Act 2003.

Current best practice recommends that the determination of health hazards due to contaminated land is based on the principle of risk assessment, as outlined in the Statutory Guidance to Part 2A (2012) and CLR11.

The risk assessment process for environmental contaminants is based on a source-pathway-receptor analysis. These terms can be defined as follows:

- Source: hazardous substance that has the potential to cause adverse impacts;
- Pathway: route whereby a hazardous substance may come into contact with the receptor: examples include ingestion of contaminated soil and leaching of contaminants from soil into watercourses; and
- Receptor: target that may be affected by contamination: examples include human occupants / users of site, water resources (surface waters or groundwater), or structures.

For a risk to be present there must be a relevant pollutant linkage; i.e. a mechanism whereby a source impacts on a sensitive receptor via a pathway resulting in potentially significant harm.

3.2 Potential Sources of Contamination

Based upon the available information, potential sources of contamination include:

3.2.1 On Site

- Made ground/hard standing present in the car park;
- Stockpiles and mounds (unknown material);
- Historic landfill/liquid Sludge Disposal Area.

3.2.2 Offsite

- Lindsey Crude Oil Refinery (operations and spills/leaks);
- Phillips 66 Humber Refinery;
- Historic Landfills;
- Sand/Clay pits;

Project number: 60569745

- Railway line and railway sidings;
- Crushed demolition material;
- Surrounding agricultural land use

3.3 Contaminants of Concern

Identified potential sources of contamination are summarised in Table 5, below.

Prepared for: VPI Immingham LLP AECOM

Table 5 – Summary of Contaminants of Concern

	Source	Contaminants of Concern
	Stockpiles/mounds/made ground	 Stockpiles/mounds are of unknown material, however are likely to include: Metals e.g. Arsenic, zinc, lead, copper, manganese Organics e.g. petroleum hydrocarbons
Onsite land use	Historic Landfill	 Metals e.g. Arsenic, Zinc, Lead, Copper, Manganese and Cadmium; Inorganic Compounds e.g. sulphates, sulphides, cyanides and chlorides;
	Railway line and former railway sidings	 Metals e.g. Arsenic, Zinc, Lead, Copper, Manganese and Cadmium; Inorganic Compounds e.g. sulphates, sulphides, cyanides and chlorides; Organic compounds e.g. mineral oils, fuel/lubricating oils, ethylene glycol, herbicides and asbestos.
	Sand/Clay Pits	 Metals e.g. arsenic, zinc, lead, copper, manganese and cadmium; Organics e.g. polyaromatic hydrocarbons (PAHs), total petroleum hydrocarbons (TPHs); Gases e.g. methane, carbon dioxide, carbon monoxide and hydrogen sulphide.
	Oil refinery operations and VPI power plant operations	 Hydrocarbons e.g. crude oil, motor oils, petrol, diesel, kerosene, lubricants, waxes, bitumen, aviation f Other organics e.g. alcohols, PCBs, MTBE, TAME, solvents, aliphatic and aromatic compounds; Inorganic compounds e.g. acids, alkalis, cyanides, Sulphur and sulphide; Metals e.g. aluminium, cobalt, copper, iron, lead, molybdenum, nickel and vanadium; Others e.g. asbestos
	Crushed demolition material	 Metals e.g. cadmium, mercury, lead and nickel; Hydrocarbons e.g. polyaromatics, asphaltenes and saturates; Others e.g. asbestos
	Current VPI Immingham CHP operations, including spills/leaks	 Metals, metalloids and their compounds e.g. aluminium, barium, cobalt and iron; Polyaromatic hydrocarbons e.g. naphthalene, anthracene and phenanthrene Other organic compounds e.g. fuel oil, degreasing solvent and PCB's; Inorganic compounds e.g. ammonium salts, boron and hydrazine; Acids and alkalis Others e.g. asbestos

3.4 Potential Pathways

Based upon the available information, the following are considered potential pathways:

3.4.1 Human Health:

- Direct dermal contact with substances in shallow soil and/or groundwater during potential groundworks;
- Inhalation of substances from the partitioning of vapours from soil and / or shallow groundwater; and,
- Accidental ingestion and/or inhalation of substances in soil/dust and/or shallow groundwater during potential groundworks;

3.4.2 Controlled Waters:

- Vertical migration through unsurfaced areas, vegetated areas and hard-standing (where there are joins / cracks) and drains/pipework into the Made Ground/shallow soil;
- Lateral and vertical migration within the made ground and superficial deposits (Secondary A Aquifer), e.g. leaching from made ground vertically into shallow soil layers, including into deeper groundwater;
- Preferential lateral and vertical migration along routes of underground services, pipelines and associated trenches;
- Lateral overland flow, including via drains, to nearby surface waters;
- Preferential lateral and vertical migration along routes of underground services, pipelines and associated trench;
- Lateral and vertical migration within deeper groundwater in the Chalk bedrock (Principal Aquifer);
- Lateral migration of groundwater into surface water courses and abstraction points;
- Direct contact of substances within shallow groundwater Migration of ground gases and accumulation in confined spaces (e.g. basements, service ducts); and,
- Direct contact with nearby buildings, including Total Lindsey Oil Refinery and Phillips 66.

3.4.3 Ecology:

Plant uptake and subsequent ingestion by fauna.

3.5 Potential receptors

3.5.1 Human Health:

- On site construction workers;
- Off-site workers e.g. Lindsey Oil refinery; and,
- Nearby residents.

3.5.2 Controlled Waters:

- Surface waters including the River Humber (RAMSAR site) and nearby drains e.g.
- Abstraction points;
- Shallow groundwater within the superficial deposits (Secondary A Aquifer); and,
- Deep groundwater within the chalk bedrock (Principal Aquifer);

3.5.3 Infrastructure:

Underground services e.g. buried pipes; and,

Project number: 60569745

Confined spaces within buildings e.g. basements, service ducts;

3.5.4 **Ecology**:

Flora and Fauna.

3.6 Preliminary Risk Evaluation

A summary of the risk assessment principles used to evaluate potential pollutant linkages is presented as Appendix B.

3.7 Summary of Potential Pollutant Linkages

A summary of the potential pollutant linkages and the related initial qualitative assessment of risk is summarised in Table 6, below. The risk rankings assume that the current ground and groundwater conditions prevail, prior to any mitigation measures such as further intrusive investigation, quantitative risk assessment or remediation. The risk rankings for each of the pollutant linkages are derived from a combination of:

- The magnitude of the potential consequence (i.e. severity) of the exposure of the receptor to the contaminant; and
- The magnitude of probability (i.e. likelihood) that the pollutant linkage is present or will occur.

Table 6 – Summary of Pollutant Linkages

Source	Pathway	Receptor	Potential severity as defined in Appendix B	Likelihood of Occurrence as defined in Appendix B	Level of Risk as defined in Appendix B	Discussion		
On site e.g. Made Ground, Hard	Direct dermal contact/ingestion/inhalation;	On-site construction workers	Medium	Likely	Moderate	It is likely that future site workers will come into contact with mound/stockpile material, the contents of which are unknown, therefore potential risk is high. There should be appropriate safety and mitigation measures put in place to minimise risk to		
Ground and Historic Landfill	Inhalation of vapours;	Off-site workers Neighbouring residents	Medium	Likely	Moderate	human health. The nearest residential receptors are located in the village of North Killingholme (1.6km west). Such residents are not anticipated to be at significant risk due to distance from site.		
	Direct run off into surface waters e.g. River Trent Humber and nearby drains	Controlled water courses e.g. River Humber and	Medium	Likely	Moderate	As indicated by the EA, there is a historic landfill located in the north western corner of the proposed development site. It is anticipated that any contamination present may have migrated both vertically and laterally into deeper groundwater and		
	Vertical and lateral migration in made ground/superficial deposits (Secondary A aquifer), including into deeper groundwater (Secondary B aquifer);	groundwater within superficial deposits (secondary A) and bedrock (secondary B).	Medium	Likely	Moderate	surface waters. Hard ground is present on site, indicating that contamination may enter surface waters via overland flow.		
	Vertical and lateral migration of ground/surface waters along preferential pathways, including to surface waters;	_	Medium	Likely	Moderate			
	Direct impact to buried infrastructure;	Buried infrastructure .e.g. pipes and underground utilities	Medium	Low	Moderate/Low	The site is within close proximity to the Lindsey Oil Refinery and Phillips 66, meaning that underground services are I be present and may be affected during excavation works.		
	Plant uptake and subsequent ingestion by fauna;	Flora and fauna	Medium	Likely	Moderate	The River Humber is a designated RAMSAR and Special Protection Area (SPA), therefore any contaminated groundwater uptake is of potential risk to both flora and fauna.		
Offsite power plant and oil refinery operations, including spills	Direct dermal contact/ingestion/inhalation;	On-site construction workers Future on-site excavation and construction workers	Medium	Unlikely	Low	Risk to human health is likely to be low, as remediation procedures, as well as pollutant mitigation measures, are assumed to be enforced by the operators of nearby industry, although this is not known for certain. Therefore, the likelihood of contaminants impacting upon human receptors is low.		
and leaks	Inhalation of vapours;	_	Medium	Unlikely	Low			
	Direct run off from on-site resources into surface waters e.g. River Humber and nearby drains;	Controlled water courses e.g. River Humber and deeper groundwater within superficial	Severe	Low	Moderate	If contaminated material migrate vertically through the made ground and into the superficial deposits, it is likely that deeper groundwater within the secondary B aquifer and surface waters will also be significantly affected. The likelihood of occurrence is however deemed to be low, as pollutant mitigation measures are assumed to be in place at nearby industrial sites. It is anticipated that groundwater abstraction wells will not be significantly affected by contamination, due to distance from site.		
	Vertical and lateral migration in made ground/superficial deposits (Secondary A aquifer) beneath the site;	 deposits (secondary A) and bedrock (secondary B); 	Severe	Low	Moderate	— anticipated that groundwater abstraction weris will not be significantly affected by contamination, due to distance from site.		
	Vertical migration into bedrock (Secondary B aquifer);		Severe	Low	Moderate			
	Vertical and lateral migration of ground/surface waters along preferential pathways;		Medium	Low	Moderate/Low			
Offsite land use inc. sand/clay	Direct dermal contact/ingestion/inhalation;	On-site construction workers Off-site workers	Medium	Unlikely	Low	The likelihood of site workers coming into contact with offsite land use contamination is unlikely due to distance from site. It is unlikely that vapours relating to offsite sources will impact human health, assuming correct PPE is worn and safety measures		
pits, landfill	Inhalation of vapours;	Neighbouring residents	Medium	Low	Moderate/Low	are followed.		
	Direct run off from Off-site resources into surface waters e.g. River Humber and nearby drains;	Controlled water courses e.g. River Humber and	Medium	Likely	Moderate	Much of the site is covered with hard ground, meaning that any contamination present on site is likely to enter nearby surface waters via overland flow. It is also likely that if exposed during works, contamination may migrate via shallow soils into		
	Vertical and lateral migration in made ground/superficial deposits (Secondary A aquifer), including into deeper groundwater (Secondary B aquifer) beneath the site;	groundwater within superficial deposits (secondary A) and bedrock (secondary B)	Medium	Likely	Moderate	groundwater and subsequently enter surface waters via lateral migration		
	Vertical and lateral migration of ground/surface waters along preferential pathways;		Medium	Likely	Moderate			
	Direct impact to buried infrastructure onsite;	Buried infrastructure .e.g. pipes and utilities	Medium	Low	Moderate/Low	Contaminants which enter the site from offsite land use impact upon infrastructure if exposed during works.		

4. Fieldwork

4.1 Ground investigations

4.1.1 Description of field work

A summary of the exploratory holes were proposed by AECOM and advanced by engineers from Socotec during the site works can be found in Table 7 below;

Table 7. Summary of Exploratory Locations

Туре	Quantity	Depth Range (m)	Remarks
Cable Percussion Boring	3	22.34 to 28.66	BH1, BH2 and BH5
Cable Percussion Boring extended by Rotary Core Drilling/Open Hole Drilling	3	28.60 to 34.60	BH3, BH4 and BH6
Dynamic Sampling	8	3.75 to 5.45	WS01 to WS08
Trial Pits/Trenches	13	2.50 to 4.60	TT1 to TT3 and TP1 to TP10

Source: Socotec Factual Report No A805-18, contained in Appendix C

The exploratory hole logs are presented in the Socotec Factual report (Appendix C). Samples taken for geotechnical purposes were collected and transported to Socotec's laboratory in Doncaster for analysis. Samples for environmental testing were collected and transported to Exova Environmental Laboratories, Deeside, for analysis. The laboratory certificates are presented in Appendix D.

4.1.2 In situ testing

Standard penetration tests (SPT) in the boreholes were carried out in accordance with BS EN ISO 22476-3+A1 (2011) and the SPT hammer energy ratio certificate is included in the Socotec Factual report Appendix C.

4.1.3 Laboratory testing

Soil testing was undertaken on samples recovered from the boreholes. The testing regime was prescribed by AECOM, and the testing was performed by Socotec Ltd and Exova Jones Ltd. All geotechnical testing was UKAS accredited and completed in accordance with current relevant standards, as set out in the Factual Report located in Appendix C. The following geotechnical laboratory tests were undertaken;

- Classification tests, including moisture content, Atterberg limits (INDEX) and particle size distribution (PSD).
- Consolidated (CU) and Unconsolidated (UU) undrained triaxial tests.
- Recompacted California Bearing Ratio (CBR) tests
- Consolidation tests (OED)
- Hydraulic Cell (HC) tests
- Soil chemical testing suite, including pH and sulphate.

Selected soil and groundwater samples were also analysed for a range of chemicals including:

- Volatile Organic Compounds (VOCs).
- Semi Volatile Organic Compounds Including USEPA PAHs (SVOCs).
- Total Petroleum Hydrocarbons- Criteria Working Group (TPH-CWG).
- Heavy Metals;
- pH,

- · soil organic matter (soils only),
- asbestos,
- ammoniacal nitrogen, chloride, fluoride, nitrate, sulphide and total sulphate. .

All geochemical tests were where available UKAS and MCERTs accredited. Copies of the tests result and laboratory certificates are presented in Appendix D.

4.2 Ground Investigation Factual Report

The results of the 2018 ground investigation, including exploratory hole logs and geotechnical laboratory testing results, are presented in Socotec's ground investigation factual report entitled "VPI Immingham Factual Report On Ground Investigation Report No A8015-18", dated July 2018. A copy of the report can be found in Appendix C.

4.3 Post Ground Investigation

Three rounds of post site work gas and ground water monitoring was undertake by AECOM between 11/05/18 and 7/05/18 the result of which can be found in Appendix E

Fourteen dual-purpose gas / groundwater monitoring wells were installed and subjected to 3 rounds of in-situ monitoring which were undertaken on 11th May 2018, 23rd May 2018 and 1st June 2018. Depth to water was recorded at each location on each visit, while Temperature (°C), Specific Conductivity (µS/cm), Dissolved Oxygen concentration (mg/L) and Oxidation-Reduction Potential (ORP) (mV) were recorded at all wells containing groundwater on the first visit when the single round of groundwater sampling was undertake. Gas flow rates and Oxygen, Carbon dioxide and Methane concentrations were recorded at each location on each monitoring visit. The results of this monitoring is presented in Appendix E

5. Ground Summary

5.1 Summary of Ground Conditions

Published information on geology, including geological maps, is summarised in detail in the VPI Immingham Phase I Geo-environmental Assessment and summarised in Section 2.2 of this report.

The ground conditions in the vicinity of the site comprise:

- Topsoil, overlying;
- Made Ground;
- Superficial deposits (Glacial Till and Glacial Sand and Gravel);
- Chalk of the Burnham Chalk Formation of the Upper Cretaceous period.

The following information is intended to summarise the results of the 2018 ground investigation by SOCOTEC UK Limited and refine the preliminary understanding of the likely ground conditions.

An outline ground model for the site is summarised in Table 8 and discussed in more detail in Sections 5.1.1 to 5.1.3.

Table 8. Outline Ground Model of the Site.

Material	Typical Description	Top of Strata, m bgl	Base of Strata, m bgl	Top of Strata, m OD	Base of Strata, m OD
Made Ground	Sandy gravelly clay	0.0	0.2 to 1.7	6.5 to 4.0	6.3 to 3.2
Glacial Till	Firm to stiff sandy gravelly clay	0.0 to 1.7	21.5 to 27.5	6.0 to 3.5	-16.8 to - 21.5
Glacial Sands and Gravels ¹	Medium dense clayey sand and gravel	12.9 to 13.0	15.2 to 16.0	-6.6 to -8.2	-9.3 to - 10.6
Weathered Chalk	Extremely weak to very weak chalk	21.5 to 27.5	26.1 to 30.9	-17.0 to -21.5	-22.5 to - 26.6
Unweathered Chalk	Medium Strong to strong chalk	26.1 to 30.9	Unproven	-22.5 to -26.5	Unproven

Note: 1) Glacial Sands and Gravels encountered in three of the six boreholes.

5.1.1 Made Ground

Made Ground is found in most of the exploratory boreholes over a range of depths (approximately 0.2m to 1.7m bgl) across the site. Made Ground is predominately described as a mix of slightly sandy, slightly gravelly, clay and sandy, clayey, gravel in a few boreholes. It contains a mixture of angular to sub-angular gravel of chalk, flint and sandstone. Cobbles are described as subrounded to subangular of concrete and chalk. The layers of different materials suggest both re-worked natural material and placed fill which follow no discernible pattern and so will collectively be assigned as Made Ground.

5.1.2 Superficial Deposits – Glacial Till and Glacial Sands and Gravels

Superficial materials are found to be Glacial Deposits, comprising Glacial Till and Glacial Sands and Gravels. Glacial Till is found consistently in all of the boreholes with approximately 17.0m to 21.0m thickness. It has been described mainly as firm, becoming stiff to very stiff below 0.0m OD, brown, mottled grey, slightly sandy, slightly gravelly, clay. There is a clear trend that shows the material stiffness increasing with depth. Layers of Glacial

Sands and Gravels were encountered in a number of boreholes. The material is described as medium dense, brown, slightly sandy, slightly clayey sand and slightly gravelly, slightly clayey, gravel. A layer up to approximately 1.0m thick was encountered in around 60% of the exploratory holes, between 2.0m and 0.0 m OD. A further layer of several metres thickness, varying from 2.3m to 2.7m thick was recorded in several boreholes at between -6.5m and -10.5m OD. However it was absent in boreholes BH2, BH4 and BH5, being replaced by a clay till deposit. The sand and gravel layers at the site may be lenticular deposits and therefore cannot be guaranteed and the appropriateness of their use in design should be carefully considered.

5.1.3 Bedrock – Burnham Chalk Formation

The boreholes show the bedrock to be chalk of the Burnham Chalk Formation. This confirms what can be seen in the BGS maps of the site. The top the weathered bedrock is found approximately at -17.0m to -21.5m OD. The upper levels of the chalk are frequently described as extremely weak to very weak with clusters of sub-horizontal and sub-vertical fractures. Chalk was mostly recovered as sandy, gravelly, clay. This indicates the upper part of the chalk is highly weathered.

Less weathered chalk was recorded between the depths of -22.5m and -26.5m OD and described as weak to medium strong, cream/white chalk.

6. Geotechnical Parameters

The following assessments and summaries are based on the recent ground investigation data provided by SOCOTEC UK Limited in 2018. Parameters have been derived using a combination of in-situ test results from the Ground Investigation, geotechnical laboratory testing and in the absence of any other data, established engineering correlations.

The 'Typical Derived Values' presented in the tables below are intended to serve as a reference point for establishing characteristic values, which are defined as 'cautious estimate(s) of the value(s) affecting the occurrence of the limit state' (Section 2.4.5.2 (2), BS EN 1997-1:2004). As such, the tabulated derived values are provided as cautious estimates of a parameter, but would need to be reviewed and adjusted according for the limit state being assessed.

Charts summarising the GI results are presented in Appendix F.

6.1 Made Ground

Made Ground material recovered and tested during the recent GI has been classified as either Cohesive Made Ground (predominately soft clay) or Granular Made Ground (predominately gravel). However, the layers of granular material were found less frequently and show no specific pattern so both types of material will collectively be defined as Made Ground. Table 9 presents indicative geotechnical parameters for the Made Ground material. The effective strength parameters defined for the Made Ground can be further assessed, if necessary, on a location specific basis using the GI data.

Table 9. – Typical Material Parameters – Made Ground

Parameter	Type and No. of Tests	Range Encountered	Typical Derived Value	Remarks
Unit Weight (kN/m³)	CBR (3)	18.8 - 19.8 (mean 19.33)	19	Derived value based on data obtained as part of recompacted CBR testing and typical published values for materials identified (BS8002:2015, Bond 2014 and Barnes 2000).
Moisture Content (%)	INDX (5)	20 - 27 (mean 22.6)	-	Data obtained primarily from Atterberg limit tests.
Liquid Limit (%)	INDX (5)	44 - 54 (mean 47.2)	-	Data obtained from Atterberg limit tests.
Plasticity Index (%)	INDX (5)	21 - 29 (mean 25.2)	28	Cautious estimate of derived value based on data obtained from Atterberg limit tests.
c _u (kPa)	HV (20)	70 - 120 (mean 110.5)	30	Cautious estimate based on borehole descriptions and guidance in BS5390:2015. Hand Shear Vane tests tend to over-estimate C _u values and have therefore only been used as an approximate guide.
E _s (MPa)	HV (20) (correlated from HV) 6MPa to 15MPa		6	E_s = (200 to 500) x C_u (Bowles. 1997).
c' (kPa)	-	0	0	No direct test data available. Cautious estimate of derived value recommended.
Phi' (degrees)	INDX (5) (correlated)	24 - 26	25 (critical state)	Cautious estimate of critical state derived value based on correlations relating critical state angle of friction and plasticity index (assuming a mean Pl value of 25) from Table 2 of BS 8002:2015. Location-specific interpretation to be undertaken for design due to variable composition.

6.2 Glacial Till

Glacial Till was the predominant material found in the boreholes with sporadic and of variable thickness layers of Glacial Sands and Gravels. The Glacial Sands and Gravels layers were identified in around half of the exploratory holes, at levels between 2.0m to 0.0 m OD and -6.5m to -10.5m OD, approximately. As a conservative assumption, it is not recommended that these layers should be modelled separately. Further assessment can be done on a location specific basis if it is later considered necessary and beneficial to assign engineering parameters to the Glacial Sand and Gravel layers.

The Glacial Till was found typically as clay with secondary constituents in varying proportions of sand and gravel. The colour is mostly brown with grey mottling. The stiffness and strength of the material increases with depth. Indicative geotechnical parameters are shown in Table 10.

Table 10 Typical Material Parameters - Glacial Till

Parameter	Type and No. of Tests	Range Encountered/ Derived	Typical Derived Value	Remarks
Unit Weight (kN/m ³)	CBR (7) + UU(14) + CU(6) + OED (8) + HC (2)	19 – 23.5 (mean 20.9)	20	Derived value based on data obtained as part of recompacted CBR testing and typical published values for materials identified (BS8002:2015, Bond 2014 and Barnes 2000).
Moisture Content (%)	INDX (71) + UU(14) + CU(6) + OED(8) + HC(2) + CBR(20)	4.9 - 28 (mean 18.9)	-	Data obtained primarily from Atterberg limit tests.
Liquid Limit (%)	INDX (34)	23 - 50 (mean 36.8)	-	Data obtained from Atterberg limit tests.
Plasticity Index (%)	INDX (34)	9 - 28 (mean 19.4)	Above 0.0m OD = 25 Below 0.0m OD = 18	Cautious estimate of derived value based on data obtained from Atterberg limit tests. Refer to Appendix F Figure A.7.
SPT-N	SPT (143)	4 - 57 (mean 28.13)	Above 0.0m OD = 13.5 Below 0.0m OD = 13.5 + 1.75L	Where L is depth below 0.0m OD.
C _v	CU (6) + OED(8)	0.61 to 5.6 (mean 2.1)	2.1	Typical values from OED + CU tests at δ_{vo} + 150kPa pressure. C_v of 17 in BH1 omitted from calculations.
M _v	CU (6) + OED(8)	0.02 to 0.67 (mean 0.22)	0.1	Range of values from CU + OED tests at δ _{vo} + 150kPa pressure. Results from OED tests are considered to give a more accurate representation of M _v values than CU tests, therefore more weight has been given to the OED results when creating typical values. Results indicate that the material has a very low to medium compressibility index (Tomlinson 2001)
c _u (kPa)	SPT (143) + HV(23)	20 - 285 (mean 137.2)	Above 0.0m OD = 50 Below 0.0m OD = 50 + 9.5L	Cautious estimate of derived value based on a correlation of $c_u = 4 \times SPT-N$ (Stroud, 1974). Where L is depth below 0.0m OD. Hand Shear Vane tests tend to overestimate C_u values and have therefore only been used as an approximate guide.

Parameter	Type and No. of Tests	Range Encountered/ Derived	Typical Derived Value	Remarks	
E _s (MPa)	SPT (143) (correlated)	3.6 - 45 (mean 36.8)	Above 0.0m OD = 12 Below 0.0m OD = 12 + 1.5L	Cautious estimate of derived value based on $E_s/N = 0.9$ MPa for cohesive soils.	
c' (kPa)	CU(6)	2.2 – 15.9	2	Cautious assumed values taken from CU tests.	
Phi' (degrees)	CU(6)	27 to 31	Above 0.0m OD = 27 Below 0.0m OD = 29	Cautious assumed values taken from CU tests	

6.3 Burnham Chalk Formation

The chalk formation encountered in the boreholes is mostly described as extremely weak to weak with closely spaced fractures (recovered as gravelly clay) overlying medium to medium strong layer of chalk. The colour is identified as white and/or cream with occasional grey or black staining.

Table 11 presents a published range of values for chalk in the literature (CIRIA 574, CIRIA Project Reports 11 and 86). As part of the 2018 GI, six (6.No) SPT tests were undertaken within the Burnham Chalk Formation, one of these is located within the unweathered material. Without geotechnical laboratory testing information available for the chalk formation, it is not possible to provide typical derived values. Should the proposed foundations terminate within, or close to, the Burnham Chalk Formation, further geotechnical information will be required at the geotechnical design stage.

Table 11 Typical Material Parameters – Chalk

Parameter	Range Encountered/ Derived	Typical Derived Value (weathered chalk)	Typical Derived Value (unweathered chalk)	Remarks
Unit Weight (kN/m ³)	13 - 24	19 ⁽¹⁾	20 ⁽²⁾	No laboratory testing information available from ground investigation. (1) Correlates to a low to medium density, weak chalk (Table 3.7 Lord et al 2002) (2) Correlates to a high density moderately weak chalk.
Moisture Content (%)	4 – 40	Unknown	Unknown	
Liquid Limit (%)	18 – 53	Unknown	Unknown	
Plasticity Index (%)	4 – 30	Unknown	Unknown	-
SPT (N)	44 – 50 (6.No SPT)	50	50	-
Point load Index (MPa)	0.01 – 1.15	Unknown	Unknown	No laboratory testing information - available from ground investigation.
q _u (MPa)	0.7 – 40	Unknown	Unknown	Typical Range of values taken from CIRIA Guide C574.
E _s (GPa)	1 – 30	Unknown	Unknown	
c' (kPa)	0 – 320	Unknown	Unknown	-
Phi' (degrees) (Peak)	29 - 42	Unknown	Unknown	
UCS (MPa)	0.7 – 40	Unknown	Unknown	<u>-</u>

6.4 Groundwater Strikes

Groundwater strikes encountered during the investigation of 2018 are summarised in Table 12 and were recorded at a range of depths (1.0m to 28.6m bgl) throughout the site. All of the strikes were found in the Glacial Till deposits with the exception of TP9, which was recorded in Made Ground at 0.7m bgl. Refer to Table 10 and Appendix C for summary of all groundwater strikes. It is considered likely that multiple water tables are contained within the Glacial Deposits.

Table 12 Recorded Groundwater Levels (04.2018)

Borehole No.	Borehole Ground Level (m OD)	Groundwater Strike Depth (m bgl)	Groundwater level after 20 mins (m bgl)	Geology
		3.8	2.3	Glacial Till
		8.5	6.3	Glacial Till
BH1	6.36	13.5	9	Glacial Sands and Gravels
		21	19.7	Glacial Till
		1.8	1.5	Glacial Till
BH2	5.43	4.2	1.7	Glacial Till
		14.1	14.1 10	
		3	1.2	Glacial Till
	5.43	7.1 4.2		Glacial Till
BH3		13.3	6.1	Glacial Sands and Gravels
		26.8	8.7	Chalk
		3.2	1	Glacial Till
	4.19	7.4	2.1	Glacial Till
BH4		12	7	Glacial Till
5111		13.4	4.2	Glacial Till
		17.8	15.1	Glacial Till
		24	9.6	Glacial Till
BH5	4.65	12.4	12.1	Glacial Till
5110	4.00	17.6 16.7		Glacial Till
BH6	4.71	4.65	2.5	Glacial Till

		11.7	3.1	Glacial Till
		18.6	16.6	Glacial Till
		21.5	16.1	Chalk
WS1	6.49	4.2	-	Glacial Sands and Gravels
WS4	5.1	3	-	Glacial Sands and Gravels
WS6	5.69	4	-	Glacial Sands and Gravels
WS7	5.79	5	-	Glacial Sands and Gravels
TP5	4.31	1.2	-	Glacial Till
TP6	5.43	1.9	-	Glacial Till
TP7	5.29	1.1	-	Glacial Till
TP9	5.71	0.7	-	Granular Made Ground
TP10	4.7	1	-	Glacial Till
TT1	6.44	1.5	-	Glacial Till

Groundwater strikes were recorded at a range of depths (1m to 28.6m bgl) throughout the site during the ground investigation. The majority of the strikes were found in the Glacial Till with a few strikes recorded in the Glacial Sands and Gravels and Chalk. In many cases, the groundwater is under sub-artesian pressures and semi-confined by less permeable clay layers. Upon release of these pressures, the recorded water strike level rises quite rapidly. Refer to Table 10 and Appendix C for summary of all groundwater strikes.

6.5 Groundwater monitoring

Following the 2018 GI, 3 rounds of ground water monitoring were undertaken by AECOM, a summary of these results can be found in Table 13 below.

Table 13 Groundwater Monitoring Results Summary (04.2018)

Hole ID	GL m OD	Range of groundwater levels m bgl	Range of ground water levels m OD	Response zone (m bgl)	Strata
BH01	6.36	3.70 -3.97	2.39 - 2.65	12.50-15.00	Glacial Deposits
BH02	5.43	2.66 - 2.87	2.56 - 2.77	14.00-15.30	Glacial Deposits
BH03	5.43	2.57 - 2.75	2.68 - 2.86	26.60-28.60	Burnham Chalk
BH04	4.19	1.31 - 1.56	2.63 - 2.88	28.60-34.60	Burnham Chalk
BH05	4.65	1.86 - 2.04	2.61 - 2.78	17.50-18.50	Glacial Deposits
BH06	4.71	2.19 - 2.33	2.38 - 2.51	25.50-34.50	Burnham Chalk
WS01	6.49	2.08 - 2.16	4.33 - 4.40	1.00-1.40	Made Ground

WS02	5.46	1.32 - 1.36	4.09 - 4.14	0.70-1.20	Made Ground
WS03	5.52	1.40 - 1.52	3.99 - 4.12	2.50-3.50	Glacial Deposits
WS04	5.1	0.96 - 0.99	4.11 - 4.13	1.30-2.30	Made Ground/Glacial Deposits
WS05	4.7	0.98 - 1.00	3.67 - 3.72	3.20-4.20	Glacial Deposits
WS06	5.69	1.59 - 1.64	4.05 - 4.10	3.10-3.70	Glacial Deposits
WS07	5.79	1.83 - 1.86	3.92 - 3.95	3.00-3.50	Glacial Deposits
WS08	4.53	3.33 - 3.86	0.67 - 1.19	3.60-4.10	Glacial Deposits

As shown in Table 13, the monitored groundwater levels range from 4.33m OD to 0.67m OD. Many of the recorded levels are shown above the selected response zones. This can indicate the groundwater in the more porous strata is under sub-artesian pressures and is confined by overlying less permeable strata, as theorised in Section 6.4.

6.6 Concrete Aggressivity

The concrete aggressivity testing was undertaken only on samples from superficial layers (6.No samples from Glacial Deposits and 5.No samples in Made Ground). Based on the limited data available, the following Design Sulphate and ACEC design classes for concrete in aggressive ground are classified in Table 14. The below results are based on brownfield conditions and are in accordance with the BRE Special Digest 1 (Concrete in Aggressive Ground). Three of the four samples taken within the Glacial Till show high value of oxdisable sulphides (>0.3%), this could suggest pyritic ground. Based on this, the classification results shown in Table 14 for the disturbed ground, assume that pyrite is present.

Table 14 Summary of Preliminary Concrete Aggressivity Classification

Stratum	Classification (undisturbed ground, eg. for buried piles)	Classification (disturbed ground, eg. for pile cap)
Made Ground	DS-2, AC-2	DS-2, AC-2
Glacial Deposits	DS-1, AC-1	DS-3, AC-3

Sulfate classes (DS) and aggressivity to concrete classes (AC) range from DS-1/AC-1 to DS-5/AC-5, with higher value classes being assigned to the more adverse ground conditions.

7. Contamination Assessment

7.1 Sample Analysis

Environmental sampling was conducted on a total of 26 soil samples and 7 groundwater samples taken during the Ground Investigation works. The full results of this testing can be found in the Ground Investigation Factual Report presented in Appendix G, but a summary of the soil and groundwater testing scheduled following the ground investigation is summarised in Tables 15 and 16.

Table 15. Summary of Geo-Environmental Soil Testing

Suite	Test Determinants	No. of Tests	Locations
CLEA Metals	As, Ba, Be, Cd, Cr, Cu, Hg, Ni, Pb, Se, V, Zn, Cr VI, Cr III	26	BH01-BH06, WS01-06, TP01-TP02, TP04-TP10, TT01-TT03
VOC+TICs	VOC target list (inc BTEX/MTBE) + TICs	10	BH01, BH02, BH05, TP01, TP02, TP06, WS01-WS03, WS05
SVOC+TICs	SVOC target list including PAHs, phenol, chlorinated phenols and phthalates (100ug/kg) plus TICs	10	BH01, BH02, BH05, TP01, TP02, TP06, WS01-WS03, WS05
TPH - CWG	TPH CWG (Aliphatics C5-6,>6-8,>8-10,>10-12,>12-16,>16-21,>21-35) (Aromatics >C5-7,>7-8,>8-10,>10-12,>12-16,>16-21,>21-35) inc BTEX/MTBE	10	BH01, BH02, BH05, TP01, TP02, TP06, WS01-WS03, WS05
Inorganics	Fluoride (soluble), Nitrate (soluble), Sulphide, Total Sulphate	10	BH01, BH02, BH05, TP01, TP02, TP06, WS01-WS03, WS05
Chloride		7	BH01, BH02, BH05, WS01-WS03, WS05
pH		26	BH01-BH06, WS01-06, TP01-TP02, TP04-TP10, TT01-TT03
Soil Organic Matter (SOM)		24	BH01-BH06, WS01-06, TP04-TP10, TT01-TT03
Ammoniacal Nitrogen		25	BH01-BH03, BH05-BH06, WS01-06, TP01-TP02, TP04-TP10, TT01-TT03
Asbestos	Fibre screen/ asbestos ID (as described in HSE document HSG 248)	26	BH01-BH06, WS01-06, TP01-TP02, TP04-TP10, TT01-TT03

Table 16. Summary of Geo-Environmental Groundwater Testing

Suite	Test Determinants	No. of Tests	Locations
VOC + TICs	VOC target list including BTEX/MTBE + TICs by GC-MS	4	WS03-WS06
SVOC	SVOC target list including PAHs, phenol and chlorinated phenols by GC-MS	4	WS03-WS06
TPH-CWG	TPH CWG (Aliphatics C5-6,>6-8,>8-10,>10-12,>12-16,>16-21,>21-35) (aromatics >C5-7,>7-8,>8-10,>10-12,>12-16,>16-21,>21-35) inc BTEX/MTBE	7	BH01-BH03, WS03-WS06
CLEA full metals + Fe(II)	CLEA Metals Full As, Cd, Cr, Cu, Pb, Hg, Ni, Se, Zn, V, Be, Ba, B, Cr VI, Cr III Fe(II)	7	BH01-BH03, WS03-WS06
Dissolved Organic Carbon (DOC)		7	BH01-BH03, WS03-WS06

Suite	Test Determinants	No. of Tests	Locations
Inorganics	pH, Ammoniacal Nitrogen as N, Total Alkalinity as CaCO3, Chloride, Nitrate as N, Ortho-Phosphate as P, Sulphate	7	BH01-BH03, WS03-WS06
Total Suspended Solids (TSS)		7	BH01-BH03, WS03-WS06

7.1.1 Observations of contamination

Visual and olfactory evidence of contamination was encountered at shallow depth in the made ground at 9 locations during the ground investigation. Headspace analysis for the presence of Volatile Organic Compounds (VOCs) was undertaken on samples taken from these locations and Photo Ionisation Detector (PID) readings recorded. These observations, along with the PID readings, are summarised in Table 17. These observations albeit not quantitative were used to select samples sent for laboratory analysis.

Table 17. Summary of Observations of Contamination

Location	tion Depth (m bgl) Description		PID Reading (ppm)
BH01	0.45-0.7	Made Ground, oily smell, black staining, wet	3.3
BH02	0.6-1.0	Made Ground, oily smell, black staining	0.9
WS01	0.5-1.2	Made Ground, oily smell	1.3
WS02	0.0-0.5	Made Ground, oily smell, black staining	0.8
WS03	0.0-1.2	Made Ground, oily smell, black staining	0.5
WS05	0.0-1.2	Made Ground, oily smell, black staining	0.1
TP01	0.7-0.9	Made Ground, oily smell, black staining	4.4
TP02	0.3-0.5	Made Ground, oily smell, black staining	42.4
TP06	0.4-0.6	Made Ground, oily smell, black staining	0.3

7.2 Stage 2 Risk Assessment

7.2.1 Human Health Risk Assessment Methodology

This assessment has been based on a general industrial or commercial future use of the site and neighbouring sites.

The assessment considers chronic risks only and does not assess acute risks to construction / maintenance workers during intrusive works.

Where the conceptual site model identifies one or more complete pollutant linkage(s) with respect to human health it is often necessary to clarify the risk posed by that pollutant linkage by comparison of reported concentrations with guideline values that represent acceptable concentrations. This includes assessing risks to human health at a generic level (termed 'Generic Quantitative Risk Assessment' (GQRA) or 'Stage 2' in the Environment Agency's Model Procedures for the Management of Land Contamination, Contaminated Land Report 11, 2004 (known as CLR11)).

The assessment of cumulative risk from multiple substances is not required at GQRA level, with the exception of TPH. In accordance with Environment Agency science report P5-080/TR3², a hazard index (HI) is calculated for each individual sample based on the summation of the hazard quotient (HQ) for each TPH fraction.

Stage 2 Generic Assessment Criteria (GAC) for soils have been calculated using the reported Total Organic Carbon (TOC) concentration of samples collected and analysed as part of the intrusive investigation.

Based on the exploratory records, the most appropriate soil type for the Made Ground and the superficial deposits was considered to be the worse-case 'SAND' scenario, as defined by the Environment Agency's standard default soil descriptions.

It should be noted that Stage 2 assessments tend to be relatively conservative and are therefore suitable for initial screening of the potential chronic long term risks to human health at a site only. Full details of the physical and chemical parameters used in the derivation of the GAC can be made available upon request.

7.2.1.1 Asbestos

A total of 25 samples collected were analysed for asbestos across the site. Six samples reported asbestos fibres (chrysotile) were present in the made ground, however the volume of asbestos detected was reported as being less than 0.1% mass by weight in each case. Further Gravimetric Quantification testing of the samples was conducted and a summary of the asbestos quantification is presented in Table 18. Laboratory certificates are presented in Appendix D.

Table 18. Results of asbestos analysis

Location	Depth (m bgl)	Asbestos type	Present as	Quantity (w/w%)
BH01	0.45-0.70	Chrysotile	Fibre bundles	<0.001%
BH02	0.6-1.0	Chrysotile	Fibre bundles	<0.001%
WS01	1.0-1.25	Chrysotile	Fibre bundles	<0.001%
TP01	0.7-0.9	Chrysotile	Fibre bundles	<0.001%
TP02	0.3-0.5	Chrysotile	Fibre bundles	<0.001%
TP06	0.4-0.6	Chrysotile	Fibre bundles	<0.001%

The presence of asbestos fibres presents a potential acute occupational health risk to any groundworks which may be undertaken on the site and should be considered by the contractor as part of any future intended works and any off-site disposal of soils.

7.2.1.2 Human Health Risk Assessment Results & Discussion

A comparison of the results of laboratory testing with the Stage 2 GAC selected for this site indicate that there are no exceedances of the chosen screening values in either soil or groundwater samples including those where visual olfactory impact was encountered . As such, no further assessment of chronic human health risks from soils are required. The full contamination assessment can be found in Appendix G.

7.2.2 Controlled Waters Risk Assessment Methodology

AECOM has a prescribed methodology for assessing risks to controlled waters at a generic level termed 'generic quantitative risk assessment' (GQRA) or 'Stage 2' in CLR11³.

For sites in England and Wales where the conceptual site model has identified a potentially complete contaminant linkage to controlled waters, the first step is to define a suitable water target value (WTV) for the identified point of compliance upon which the risk assessment can be based. For groundwater compliance points which may support potable abstraction, the UK Drinking Water Standard (DWS) is used in England and Wales

² The UK Approach for Evaluating Human Health Risks from Petroleum Hydrocarbons in Soil, Report P5-080/TR3. Bristol: Environment Agency (2005).

³ Environment Agency (2004) Model Procedures for the Management of Land Contamination, Contaminated Land Report 11. September 2004.

whilst for surface water compliance points or non-potable aquifer units, an Environmental Quality Standard (EQS) is adopted. EQS coastal has been adopted for this site due to the sites proximity to the Humber Estuary.

The following Controlled Waters receptors have been considered in the following assessment:

- Superficial deposits underlying the site are classified as a Secondary A Aquifer;
- The Burnham Chalk Formation limestone bedrock underlying the site is classified as a Principal Aquifer; and
- The Humber estuary.

7.2.2.1 Controlled Waters Risk Assessment Results & Discussion

A comparison of the results of laboratory testing with the Stage 2 GAC selected for this site indicate that there are a number of exceedances of the chosen screening values. These exceedances are detailed in Table 19 below; The full contamination assessment can be found Appendix G

Table 19. Exceedance of Stage 2 GAC for Controlled Waters: Groundwater

Parameter	Location	Max Concentration (µg/I)	Exceedance of DWS	Exceedance of EQS
Selenium	BH03	16	Х	
Zinc	BH01, BH03, WS05	12		X
Sulphate	WS03-WS06	983,900		X
Chloride	WS03-WS05	1,280,000		X

Table 19 shows that analysis of groundwater beneath the site indicates that only Selenium exceeds the DWS, while zinc, sulphates and chloride exceed the Coastal EQS. The exceedance of the DWS for Selenium is marginal (a magnitude of 1.6) and there are no potable extractions in the vicinity of the site, while the EQS exceedances are not replicated in surface waters within the hydrological catchment according to published Environment Agency monitoring data.

While unacceptable risk cannot be demonstrated to controlled waters at this time, the possibility of pathways for contaminants from soils to groundwater or surface water being created by the development (e.g. along services or foundations) or during the construction phase must be considered as part of the scheme design.

7.2.3 Ground Gas Risk Assessment

The ground gas assessment is based on a three ground gas monitoring events undertaken during May and June 2018. Details of the ground gas monitoring is provided in Appendix E.

The results of the gas monitoring are summarised in Table 20 and indicate that:

- Methane was recorded at levels <0.1 − 0.7% Vol. which is below the lower explosive limit.
- Carbon dioxide was recorded at levels <0.1 3.9% Vol.
- Oxygen was recorded at levels between 14.4–20.7% Vol;
- Gas flow rates were recorded between -17.0 and 7.3l/hr;

Potential risks posed by the identified ground gas regime have been considered using the methodology outlined in BS 8485:2015.

A summary of the Gas monitoring is given in Table 20 which includes the Characteristic Situation per borehole. The published guidance including BS8485 and CIRIA C665 indicates that there is a six-fold scale of Characteristic Situations for the potential emission of ground gas, mainly methane and carbon dioxide, which are related to the setting of the site and the gassing potential of the ground. The Characteristic Situation is determined from data on monitored gas concentrations and flow rates. Characteristic Situation 1 is essentially very low risk typical of natural soils with low gassing potential whereas Characteristic Situation 6 is very high risk typical of young or recent active landfills. In order to calculate the worst case characteristic situation the maximum carbon dioxide concentration of 3.9% and a worst case flow rate, assuming negatives value have the potential to be positive, of 17l/hr were used to calculate the Gas Screening Value. This is therefore calculated as 0.29. Furthermore concentrations of Carbon Dioxide and Methane are below 5% and 1% respectively which, as defined by BS8485:2015, means the site is classified as Characteristic Situation (CS) 2.

In the six-fold scale CS2 denotes a low risk from ground gas.

The Characteristic Situation is then used to define the level of protection from ground gas to be built into the development, taking account of the "Type" of building development which relates to the sensitivity of the development and its use. The range of protection measures are rated according to a scoring (points) scale in BS8485, thus the designer can assemble a range of measures which together reach the required aggregate score for the Characteristic Situation and building type being dealt with. It is considered that in accordance with the development proposals, the majority of the proposed generation plant and buildings on site would fall into a "Type D" industrial style buildings which for a CS2, where the made ground is left in place, will require 1.5 points of gas protection. This is a relatively low level of protection consistent with the CS rating. However any smaller ancillary buildings will be classified as "Type C" which will require a higher level of protection which AECOM considers would be 2.5 points of gas protection in the event that the made ground is left in place.

However the highest concentrations of Carbon Dioxide and flow were detected in shallow Made Ground. Should Made Ground be removed as part of site preparation the Gas screening value, which would be defined by the gassing potential of the natural strata, would be 0.0584 which would classify the site as CS 1, very low risk, where no gas protection measures are required.

Table 20 Summary of ground Gas Monitoring

Exploratory Hole	Stratum	Date	Barometric Pressure (mb)	Peak Flow rate (I/h)	Steady Flow	Peak CO2 (% vol)	Peak CH4 (% vol)	GSV	Characteristic Situation CO2	GSV (I/hr)	Characteristic Situation CH4	Min O2 (% vol)
		11/05/2018	1011.0	0.0	0.0	1.0	0.7	0	1	0	1	19.6
	Made —	23/05/2018	1025.0	0.0	0.0	0.1	0.1	0	1	0	1	20.3
WS01	Ground	07/06/2018	1018.0	0.0	0.0	0.5	0.2	0	1	0	1	20.2
		11/05/2018	1012.0	0.0	0.0	0.4	0.1	0	1	0	1	20.1
	Made	23/05/2018	1026.0	-17.0	0.0	3.9	0.1	-0.663	1	-0.017	1	14.4
WS02	Ground	07/06/2018	1018.0	0.0	0.0	1.3	0.1	0	1	0	1	19.4
		11/05/2018	1012.0	0.0	0.0	0.1	0.1	0	1	0	1	20.5
	Glacial —	23/05/2018	1025.0	7.3	0.0	0.3	0.2	0.0219	1	0.0146	1	20.3
WS03	Deposits —	07/06/2018	1018.0	5.4	0.0	0.3	0.3	0.0162	1	0.0162	1	20.4
		11/05/2018	1012.0	0.0	0.0	0.2	0.2	0	1	0	1	20.2
	Glacial —	23/05/2018	1026.0	0.0	0.0	0.1	0.1	0	1	0	1	20.3
WS04	Deposits —	07/06/2018	1018.0	0.0	0.0	0.1	0.1	0	1	0	1	20.6
		11/05/2018	1012.0	0.0	0.0	0.0	0.0	0	1	0	1	20.7
	Glacial —	23/05/2018	1026.0	0.0	0.0	0.1	0.1	0	1	0	1	20.3
WS05	Deposits	07/06/2018	0.0	0.0	0.0	0.0	0.0	0	1	0	1	20.4
		11/05/2018	1017.0	0.0	0.0	0.1	0.1	0	1	0	1	20.6
	Glacial —	23/05/2018	1025.0	0.0	0.0	0.2	0.1	0	1	0	1	20.3
WS06	Deposits	07/06/2018	1017.0	0.0	0.0	0.1	0.1	0	1	0	1	20.7
		11/05/2018	1016.0	0.4	0.2	0.4	0.2	0.0016	1	0.0008	1	20.6
	Glacial —	23/05/2018	1025.0	0.0	0.0	0.4	0.1	0	1	0	1	20.2
WS07	Deposits	07/06/2018	1017.0	0.0	0.0	0.1	0.1	0	1	0	1	20.7
WS08	Glacial	11/05/2018	1017.0	4.8	0.0	0.7	0.5	0.0336	1	0.024	1	20.4

	Deposits	22/05/2010	100/ 0	4.0	0.0	0.0	0.0	0.000/	1		1	20.4
	_	23/05/2018	1026.0	4.8	0.0	0.2	0.0	0.0096	<u> </u>	0	<u> </u>	20.4
		07/06/2018	1016.0	1.3	0.0	0.5	0.0	0.0065	1	0	1	20.7
		11/05/2018	1012.0	0.0	0.0	0.4	0.2	0	1	0	1	20.1
	Glacial —	23/05/2018	1026.0	5.3	0.0	0.6	0.4	0.0318	1	0.0212	1	19.8
BH01	Deposits	07/06/2018	1018.0	-1.0	0.0	0.7	0.5	-0.007	1	-0.005	1	19.9
		11/05/2018	1012.0	0.0	0.0	0.2	0.2	0	1	0	1	20.5
	Glacial —	23/05/2018	1025.0	0.0	0.0	0.1	0.1	0	1	0	1	20.4
BH02	Deposits	07/06/2018	1017.0	0.0	0.0	0.1	0.1	0	1	0	1	20.6
		11/05/2018	No readings po	ossible								
	_	23/05/2018	1026.0	0.0	0.0	0.8	0.1	0	1	0	1	20.3
BH03	Chalk	07/06/2018	1017.0	6.0	0.0	0.1	0.1	0.006	1	0.006	1	20.4
		11/05/2018	1017.0	0.0	0.0	0.1	0.1	0	1	0	1	20.7
		23/05/2018	1025.0	0.0	0.0	0.1	0.1	0	1	0	1	20.3
BH04	Chalk	07/06/2018	1016.0	0.0	0.0	0.1	0.0	0	1	0	1	20.7
		11/05/2018	1017.0	0.0	0.0	0.4	0.1	0	1	0	1	20.1
	Glacial —	23/05/2018	1026.0	0.0	0.0	0.2	0.1	0	1	0	1	20.3
BH05	Deposits	07/06/2018	1016.0	0.0	0.0	0.0	0.0	0	1	0	1	20.7
		11/05/2018	1017.0	0.0	0.0	0.1	0.1	0	1	0	1	20.6
		23/05/2018	1025.0	0.0	0.0	0.1	0.1	0	1	0	1	20.4
BH06	Chalk	07/06/2018	1017.0	0.0	0.0	0.1	0.1	0	1	0	1	20.7
Worst case CS			1026.0	17.0	0.2	3.9	0.7	0.663	2	0.119	0.11271	20.7

7.2.3.1 Discussion of Risks to Ecological Receptors

The Statutory Guidance which accompanies Part 2A of the Environmental Protection Act 1990 defines ecological receptors as any ecological system, or living organism forming part of such a system, within a location which is:

- A site of special scientific interest (under section 28 of the Wildlife and Countryside Act 1981)
- A national nature reserve (under s.35 of the 1981 Act)
- A marine nature reserve (under s.36 of the 1981 Act)
- An area of special protection for birds (under s.3 of the 1981 Act)
- A "European site" within the meaning of regulation 8 of the Conservation of Habitats and Species Regulations 2010
- Any habitat or site afforded policy protection under section 176 of the National Planning Policy Framework 2018 (NPPF) on nature conservation (i.e. candidate Special Areas of Conservation, potential Special Protection Areas and listed Ramsar sites); or
- Any nature reserve established under section 21 of the National Parks and Access to the Countryside Act 1949.

Any risk assessment must consider whether significant harm is being caused or a significant possibility of significant harm exists to any given ecological receptor. Harm in this context could be defined as;

- Harm which results in an irreversible adverse change, or in some other substantial adverse change, in the functioning of the ecological system within any substantial part of that location; or
- Harm which significantly affects any species of special interest within that location and which endangers the long-term maintenance of the population of that species at that location.
- In the case of "European Sites", harm can exist where the sites designation could be affected by the presence of a contaminant linkage.

A significant possibility of significant harm exists where significant harm is more likely than not to exist for any given linkage or where there is a reasonable possibility of significant harm of that description being caused, and if that harm were to occur, it would result in such a degree of damage to features of special interest at the location in question that they would be beyond any practicable possibility of restoration.

In the case of this site, there are a number of potentially sensitive ecological sites in the wider area, but the closest (the Humber Estuary which is a SSSI, SPA and Ramsar site) is 1.3km away and so unlikely to be affected by pollutants present on the site. Routine monitoring of the ecological receptors in the Humber Estuary does not suggest that there is currently an unacceptable risk to those receptors.

7.3 Revised Conceptual Site Model

7.3.1 Introduction

A refined conceptual site model (CSM) has been developed on the basis of the desk study and the findings of the ground investigation and contamination assessment.

To assess the potential geo-environmental impacts associated with chemicals of potential concern in the section, the conceptual model has been revised using the source pathway receptor approach, promoted by DEFRA and the Environment Agency. For there to be an identifiable risk, not only must there be contaminants present across the section (source) there must also be a receptor and a pathway which allows the source to impact on the receptor.

7.3.2 Risk Assessment Framework

The site, in terms of potential land contamination, will be regulated by the local authority (North Lincolnshire County Council) under the Town and Country Planning Act 1990 (as amended), taking account of the National Planning Policy Framework 2012, with the Environment Agency, Natural England and English Heritage acting as statutory consultees.

The 'suitable for use' approach is adopted for the assessment of contaminated land where remedial measures are only undertaken where unacceptable risks to human health or the environment are realised taking into account the use (or proposed use) of the land in question and the environmental setting.

Additional environmental liabilities can arise through provisions contained within statutory legislation including Part 2A of the EPA 1990, the Water Resources Act 1991, the Groundwater Regulations 2009 and the Water Act 2003.

Current best practice recommends that the determination of health hazards due to contaminated land is based on the principle of risk assessment, as outlined in the Statutory Guidance to Part 2A (2012) and CLR11.

The risk assessment process for environmental contaminants is based on a source-pathway-receptor analysis. These terms can be defined as follows:

- Source: hazardous substance that has the potential to cause adverse impacts;
- Pathway: route whereby a hazardous substance may come into contact with the receptor: examples include ingestion of contaminated soil and leaching of contaminants from soil into watercourses; and
- Receptor: target that may be affected by contamination: examples include human occupants / users of site, water resources (surface waters or groundwater), or structures.

For a risk to be present there must be a relevant pollutant linkage; i.e. a mechanism whereby a source impacts on a sensitive receptor via a pathway resulting in potentially significant harm.

7.3.3 Pollutant Linkages

The Potential Pollutant Linkages identified in the previous AECOM report "VPI Immingham Phase I Geoenvironmental Assessment have been revised following the completion of the ground investigation and the residual linkages are presented below in Table 21. Linkages previously assessed to be 'Low' risk in the Phase 1 Desk Study document have been removed from the table:

Table 21: Revised Conceptual Site Model

Source	Pathway	Receptor	Preliminar y Level of Risk	Discussion & Mitigation	Residual Level of Risk
On site e.g. Made Ground, Hard	Direct dermal contact/ingestion/inhalation;	-	Moderate	A Stage 2 Risk Assessment of the results of the ground investigation has not deemed that the soils pose an unacceptable risk to human health for the proposed end use. Low levels of asbestos fibres were found to be present in made ground at acceptable risk to human health for the proposed end use.	
Ground and Historic Landfill	Inhalation of vapours; Inhalation of asbestos fibres	On-site construction workers	Moderate	found to be present in made ground at several locations on the site, but these concentrations are not sufficient to present a risk to receptors on adjacent sites during construction or to the proposed development which will be covered by hardstanding or structures. Visual and Olfactory evidence of impacted soil was encountered in several locations therefore during construction the use of correct PPE and an appropriate Construction Environmental Management Plan (CEMP) will protect construction workers from exposure pathways created by excavations and stockpiled material and make sure that migration of contaminants to more sensitive adjacent	Low
	Inhalation of ground gas, i.e. methane and carbon dioxide	Off-site workers Neighbouring residents Future site workers	Moderate	land uses is controlled. A preliminary assessment of measured gas concentrations and flow rates in accordance with BS8485:20015 has determined that the overall 'Characteristic Gas Classification' for the site is Category 2, It is considered that in accordance the majority of the proposed power generation plant and buildings on site would fall into a Type D industrial style buildings which for a CS2 will require 1.5 points of gas protection however any smaller ancillary buildings will be classified as type C which will require 2.5 points of gas protection. However if Made Ground is removed as part of the pre construction works the site would classify as CS1 where no protection measures are required. The Construction Phase Plan should make sure that construction workers take suitable precautions if working in enclosed spaces	Low
	Direct run off into surface waters e.g. River Humber and nearby drains	Controlled water courses e.g. River Humber and	Moderate	Concentrations of various substances were found to be present in the soils at concentrations above both relevant Water Target Values for those substances. However, analysis of groundwater samples does not indicate that those concentrations in soil are leading to exceedances in the underlying groundwater.	Low
	Vertical and lateral migration in made ground/superficial deposits (Secondary A aquifer), including into deeper groundwater (Secondary B aquifer);	groundwater within superficial deposits (secondary A) and bedrock (secondary	Moderate	An appropriate CEMP should minimise the risk of run-off from site-won material, while further risk assessment may be required with regard foundation design to prevent the creation of additional pathways to deeper bodies of groundwater. An appropriate risk assessment will be required for any piled foundations that are required in the final design. There are concentrations above the relevant WTV of a variety of contaminants in the soils below the site and deep foundations may create pathways through	Low

	Vertical and lateral migration of ground/surface waters along preferential pathways, including to surface waters;	B).	Moderate	less permeable layers from the unsaturated zone to sensitive groundwater below	Low
	Direct impact to buried infrastructure;	Buried infrastructure .e.g. pipes and underground utilities	Moderate/ Low	Elevated concentrations of sulphates have been noted in groundwater samples, but the water table is at sufficient depth and is largely confined by less permeable clay strata, so contact with buried services is unlikely as services will be located within clean backfill, in the unsaturated zone. Consideration of sulphates in groundwater may need to be given when designing building foundations, especially piled foundations. Advice should be sought from the local water supply company to confirm the appropriate pipe specification for the identified ground conditions and a UKWIR compliant risk assessment may be required to specify pipework.	
	Humber Estuary Ramsar, SPA, SSSI	Ecological receptors	Moderate	The distance to the Humber makes it unlikely that there is an unacceptable risk to ecological receptors, given the small number and relatively low magnitude of the exceedances detected during groundwater monitoring.	Low
Offsite power plant and oil refinery operations,	Direct run off from on-site resources into surface waters e.g. River Humber and nearby drains;	Controlled water	Moderate	The ground investigation gave no indication of off-site contaminant sources transiting across the site as surface run off or within shallow groundwater. If such sources were found during construction phase, care should be taken to make sure that no preferential pathways are created. If this were to occur it would be notable as a health and safety issue during construction phase rather than as an ongoing	
including spills and leaks	Vertical and lateral migration in made ground/superficial deposits (Secondary A aquifer) beneath the site;	courses e.g. River Humber and deeper groundwater within superficial deposits	Moderate	environmental concern during operational phase.	Low
	Vertical and lateral migration of ground/surface waters along preferential pathways;	(secondary A) and bedrock (secondary B);	Moderate/ Low		Low
	Inhalation of vapours;	On-site construction workers Future site workers	Moderate/ Low	No contamination plume with potential to cause vapours was identified coming from the adjacent site.	Low

Offsite land use inc. sand/clay pits, landfill and petrol station	Direct run off from Off-site resources into surface waters e.g. River Humber and nearby drains; Vertical and lateral migration in made ground/superficial deposits (Secondary A aquifer), including into deeper groundwater (Secondary B aquifer) beneath the site; Vertical and lateral migration of ground/surface waters along preferential pathways;	On-site construction workers Controlled water courses e.g. River Humber and groundwater within superficial deposits (secondary A) and bedrock (secondary B)	Moderate Moderate	The ground investigation gave no indication of off-site contaminant sources transiting across the site as surface run off or within shallow groundwater. If such sources were found during construction phase, care should be taken to make sure that no preferential pathways are created. If this were to occur it would be notable as a health and safety issue during construction phase rather than as an ongoing environmental concern during operational phase.	
	Direct impact to buried infrastructure onsite;	Buried infrastructure .e.g. pipes and utilities		The ground investigation did not indicate the presence of chemicals within the unsaturated zone which could cause harm to buried infrastructure. Advice should be sought from the local water supply company to confirm the appropriate pipe specification for the identified ground conditions. Concrete classification for foundation covered in section xx	Low

7.3.4 **Residual Contaminant Linkages**

Following the Stage 2 Risk Assessment and consideration of the findings of the Ground Investigation, all outstanding pollutant linkages can be regarded as having a low level of risk, assuming that an appropriate CEMP is developed for the development and that appropriate risk assessment including consideration of ground conditions is applied to the design of piled foundations.

7.4 **Summary of Contaminant Linkages**

Table 22. Summary of Contaminant Linkages

Conclusions

Recommendations

Buildings (Ground Gas)

preliminary assessment of measured concentrations and flow rates in accordance with rates in accordance with BS8485:20015 has determined that the overall 'Characteristic Gas Classification' for the site is Category 2It is considered that in accordance the majority of the proposed power generation plant and buildings on site would fall into a Type D industrial style buildings which for a CS2 will require 1.5 points of gas protection however any smaller ancillary buildings will be classified as type C which will require 2.5 points of gas protection.

However if Made Ground is removed as part of the pre-construction works the site would classify as CS1 where no protection measures are required.

Where required ground gas protection measures as defined in BS8485 should be incorporated in the buildings.

Standard good health and safety practice and PPE should be specified within the Construction Phase Plan in order to protect construction workers from gas within confined spaces.

Stage 2 Screening of laboratory samples against No remedial actions are required to protect site appropriate GAC does not indicate any risk to human health for the current or proposed land use.

An appropriate CEMP and the use of standard PPE will be sufficient to protect construction workers from contact with substances present in the soil, given the concentrations encountered during the investigation.

users or future site users from substances in the soils. The stage 2 risk assessment does not assess the specific risks to construction workers, but appropriate PPE and CEMP precautions will be sufficient to mitigate risk to construction works.

Human Health

Assessment of risks to controlled waters from leachable (soluble) concentrations of potentially polluting substances in soil, when compared conservatively against DWS and EQS, show a number of exceedances. However, this is not reflected in the groundwater below the site and the distance to Affected by Contamination: sensitive surface waters makes the possibility of harm to sensitive controlled waters from leachable soil substances unlikely.

No remedial measures are required on site to protect controlled waters. However any piles should be designed in accordance with the EA guidance entitled Piling and Penetrative Ground Improvement Methods on Land

Guidance on Pollution Prevention (2001)

Controlled **Waters**

There are concentrations above the relevant screening criteria for a variety of contaminants in the soils below the site and deep foundations may create pathways through less permeable layers from the unsaturated zone to sensitive groundwater below. However the risks associated with deep foundations can be mitigated by means of risk assessment specific to the design and construction proposals.

Ecological Receptors The Humber Estuary and Rosper Road Pools Although it is not considered the site is a represents ecological receptors, but the distance to the receptor is such that harm is unlikely to be caused.

significant risk to Statutory ecological receptors . A landscape architected should be provided with the chemical analysis in order to establish suitable plant species for the site.

Subsurface infrastructure

Advice should be sought from the local water supply company to confirm the appropriate pipe specification for the identified ground conditions. Concrete Aggressivity is discussed in Section 5.5

Prepared for: VPI LLP **AECOM**

8. Geotechnical Assessment

8.1 Proposed Works

As noted in Section 1, VPI Immingham LLP are exploring the development of several gas fired power generation and storage projects including reciprocating engines and an OCGT power plant. The new extension will be situated north of the current site, on land presently occupied by a car park and undeveloped land. At the time of writing this report, there is no structural loading information available so the following engineering assessment is based on general assumptions.

8.2 Engineering Assessment

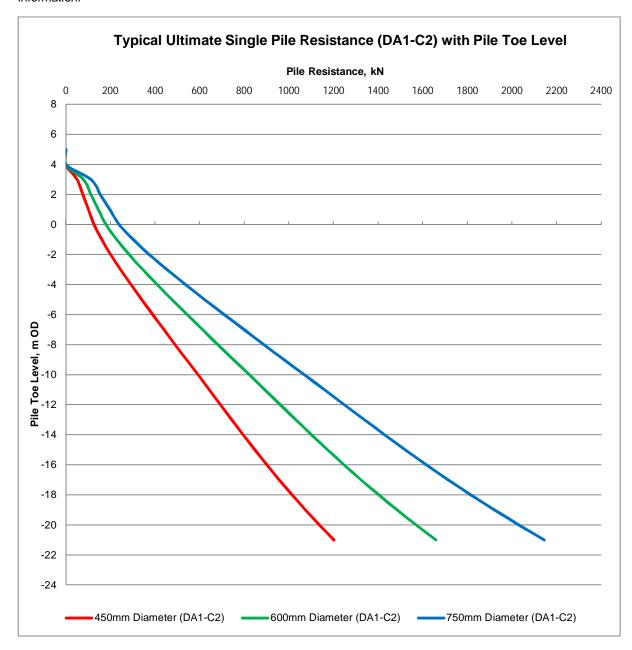
With no structural loading or settlement criteria information available, it is assumed that the CHP extension will contain a number of relatively heavy and sensitive structures. The proposed site layout drawings presented in Appendix B also shows several individual buildings which are linked by connections or directly adjacent to one another. Possible foundation solutions that could be progressed for the project include:

8.2.1 Shallow Foundations

Based on the recent GI, Made Ground material typically extends up to 1.5m bgl. Due to its variable nature, the Made Ground strata could not be relied upon as a stable founding material. Should shallow foundations be used, they would need to be placed upon natural ground, such as the firm to stiff clay, Glacial Till layer. This could be in the form of a large raft foundation or individual pad foundations under the separate buildings. The 1986 version of BS8004 – Code of Practice for Foundations estimates that firm to stiff clays, like those encountered on site, could achieve typical allowable bearing resistance values between 75kN/m² to 150kN/m². Further analysis will need to be undertaken to assess the potential bearing pressures produced by the CHP extension in comparison with the soils bearing resistance.

BS8004 also notes that founding on firm to stiff clays of low to medium compressibility could lead to long-term consolidation settlement. It is therefore advised that the settlement of sensitive foundations/structures should be considered. Natural variations in the Glacial Till stiffness or composition could create differential displacements between individual pad foundations. Creating a large raft foundation to support groups of buildings could help control the differential displacement between points but would result in higher total settlements. It should be noted that, if a large raft foundation at > 2.0m depth is selected, large quantities of existing material would need to be excavated as part of the construction process. This could be both environmentally and economically expensive.

In summary, it is considered that lightly loaded structures of the appropriate structural form could be founded on shallow foundations placed in glacial till of at-least firm to stiff consistency at the site.


8.2.2 Deep Foundations

Deep foundations such as piles are often used to transfer loads through weak, compressible soils to more competent soils or rocks. In the case of the generation plant and buildings, should the applied structural loads or settlement criteria supersede the capacity of shallow foundations, as discussed in Section 7.2.1, deep piled foundations could be introduced. Based on the ground conditions summarised in Section 4 and Section 5, the piles would need to be drilled to a set depth within the Glacial Till stratum or socketed into the Burnham Chalk Formation. Without an indication of the typical pile loads, the pile lengths cannot be determined. Figure 7.2.2-1 however, gives an indication of the typical ultimate single pile resistance for a range of pile diameters. Pile resistances are produced for the more critical Design Approach 1 – Combination 2 (DA1-C2), which are based on guidance given in BS EN 1997-1:2004 – Eurocode 7 – Geotechnical Design.

The graph assumes that the piles are bored with a Continuous Flight Auger (CFA) and will terminate within the Glacial Till layer. Should the piles need to penetrate the Burnham Chalk Formation, further GI information will be required to develop a safe design.

Two design approaches can be adopted for piled foundations; placing the buildings on individual pile caps/rafts or creating a piled raft to cover large sections of the site. A piled raft will require a larger quantity of construction work but will ensure a stable design which will limit differential settlements between the buildings. Individual pile caps/rafts for separate buildings will allow for more flexibility in the pile design and enable costs to be optimised.

Both shallow and deep foundation options will need to be investigated further upon the release of more structural information.

9. Geotechnical Risk Register

9.1 Assessing Geotechnical Risk

A Geotechnical Risk Register has been compiled to show the degree of risk attached to various ground related aspects of the proposed scheme. The purpose of the register is to produce an assessment of the risk to the project posed by common ground related problems and identify suitable mitigation measures to control the risk to an acceptable level. The risk register should be developed and refined as the geotechnical design and assessment progress, such that the register will allow management of the geotechnical risks.

The inclusion of a risk in the risk register does not constitute confirmation that the problem actually exists at the site. A probability of 'very unlikely' is indicative of a condition which the available evidence suggests should not be present. For the purposes of this risk register, the magnitude of each impact and the resulting severity of risk is measured against that which would 'normally' be expected for each element.

The Geotechnical Risk Register has been developed in general accordance with the guidance presented in ICE/DETR Document 'Managing Geotechnical Risk' (2001) and the HA document HD41/03 and HD22/02. The degree of risk (R) is determined by combining an assessment of the probability (P) of the hazard with an assessment of the impact (I) the hazard and associated mitigation will cause if it occurs ($R = P \times I$).

9.2 Geotechnical Hazards

The following section describes the ground-related hazards that have been identified during the investigation.

9.2.1 Variable Ground

Based on the 2018 Socotec UK Limited GI, up to 1.7m of Made Ground has been identified across the site. Due to nature of Made Ground, its properties are likely to be highly variable across the site. It is advised that any foundation solution does not rely on this material for support.

Granular layers within the Glacial Deposits could lead to settlement occurring at varying rates where these layers are and are not present. The possibility of differential settlement caused by such behaviours should be considered in the foundation design.

Burnham Chalk Formation was recorded at the base of four boreholes during the 2018 GI. The upper layers were described as weathered, extremely weak to weak chalk. Chalk is an unusual engineering material and can degenerate into a weak soil with intense weathering or mishandling. It also has the propensity to effectively re-cement with time. The design properties of Chalk are very variable, depending on the density and structure of the material. Should the proposed foundations terminate within, or close to, the Burnham Chalk Formation, further geotechnical information will be required to progress the design.

9.2.2 Ground Water

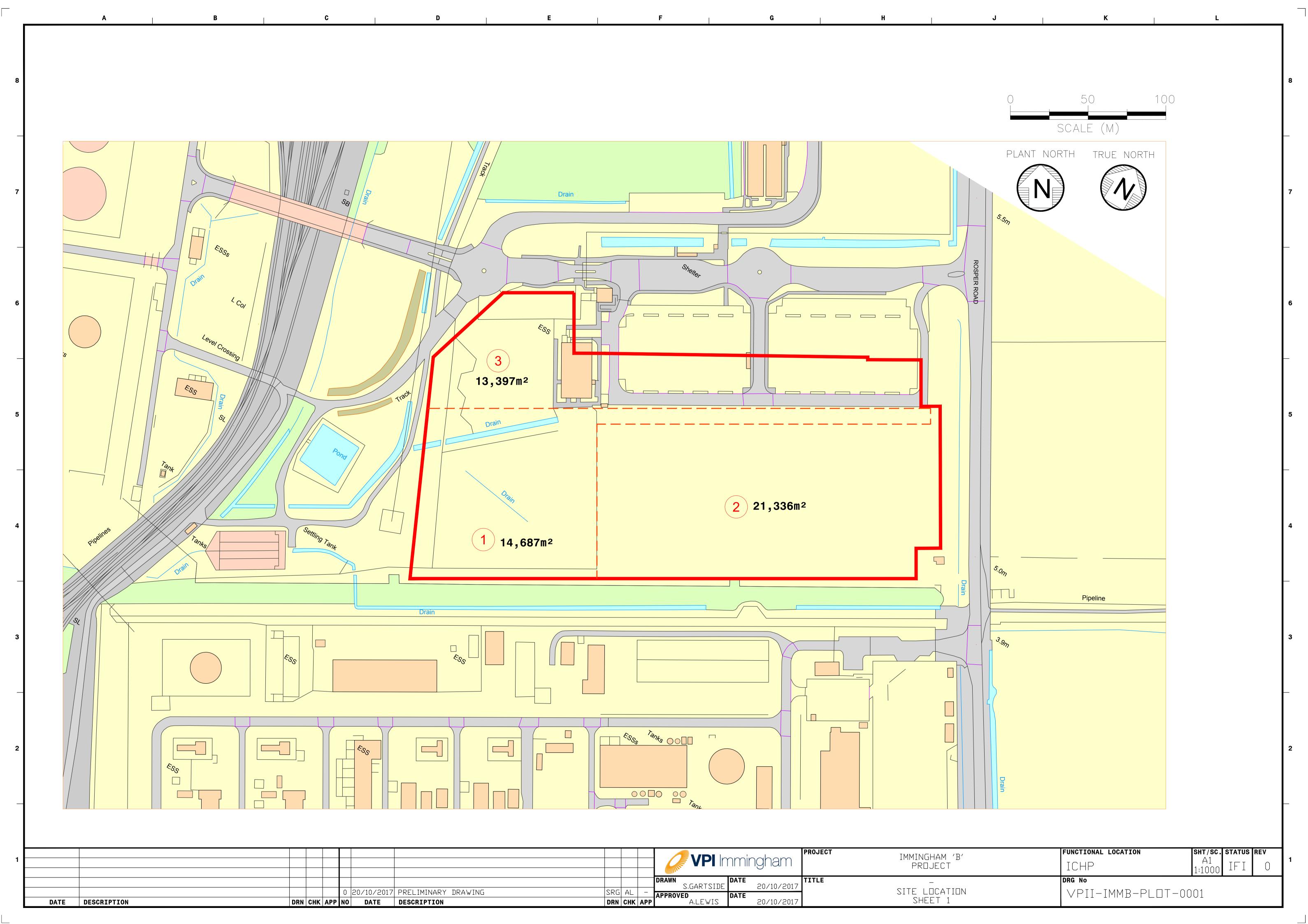
Seepages have been noted at various levels within the site. Where granular materials are present, water could flow at a relatively rapid rate, potentially undermining excavation stability. Water flowing from granular layers and from the chalk at depth which is under significant pressure could also have a detrimental effect on pile stability during construction. Continuous Flight Auger (CFA) piling, and / or bored piling under a bentonite drilling fluid, would help mitigate this problem.

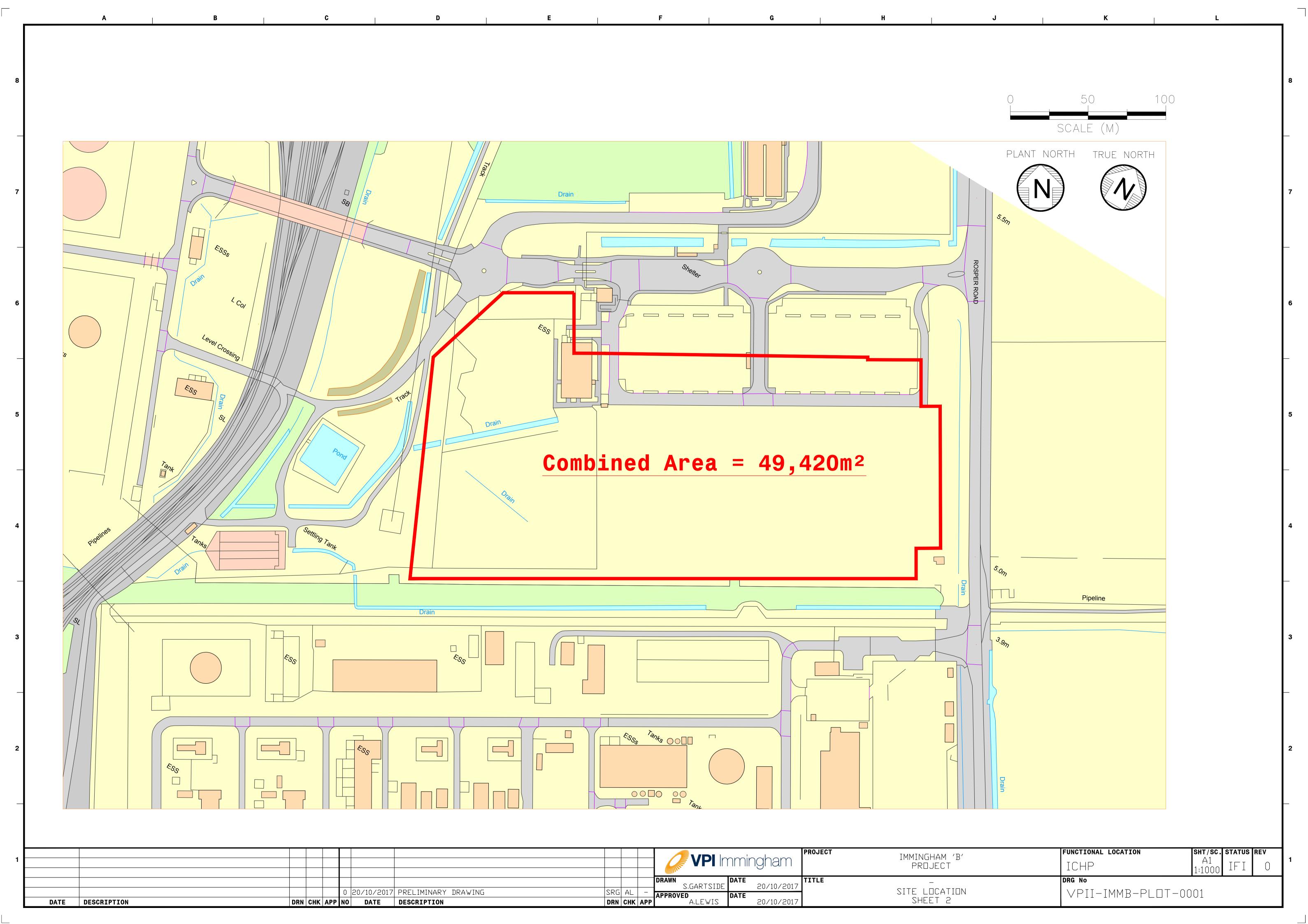
9.2.3 Buried Obstructions or Services

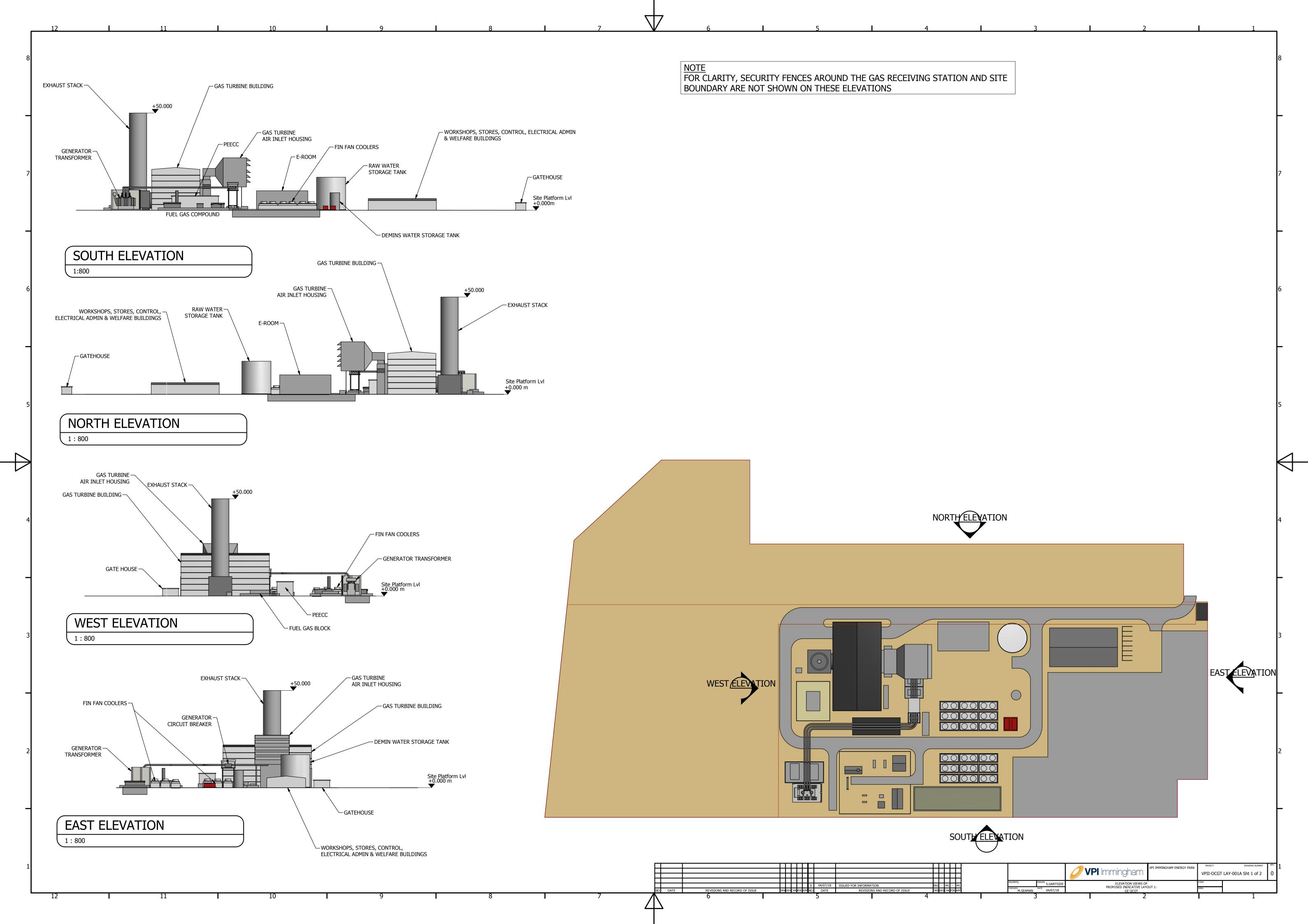
As noted in Section 2, the site is largely surrounded by a mix of industrial and agricultural land use. This means there is the potential for buried services to be present at the site. Without service plans available, it should be assumed that there is a high risk of underground obstructions. Prior to the commencement of any construction work, further information on the potential services or buried obstructions should be sought from the relevant providers and then identified by inspection. Deeper areas of Made Ground and buried obstructions may be present at the site.

9.2.4 Risk Register of Geotechnical Hazards

The geotechnical risks associated with the proposed works are summarised in Table 22 below


Table 23 Hazard Index for Geotechnical Risk


Risk Number			Cause	Ве	sk fore	e tion	Mitigation			After
				P	ı	R	_	P	ī	R
GEO 001	Variable prop Made Ground		Historical site use	5	3	15	Proposed foundation solutions should not rely upon the Made Ground material. For example, piled foundations or shallow foundations founded on competent Glacial Till.	1	2	2
GEO 002	Limited groun information of Chalk Forma to derive acc parameters for required.	n Burnham tion. Unable urate	Insufficient borehole depth during previous ground investigations.	3	3	9	Should the proposed foundation solution come in close proximity to the Burnham Chalk Formation, further GI will be required to help derive accurate rock parameters for design.	1	2	2
GEO 003	Unknown ser buried obstru the site. Prop foundation de clash with se	octions at posed esign could	Historic site use.	4	4	16	Service plans are to be sought from providers prior to breaking ground. Area should also be surveyed to confirm potential services at the site. Buried obstructions / deep Made Ground are to be excavated during construction.	2	2	4
GEO 04	High ground within granul- from the chal of excavation holes.	ar soils and k Collapse as/ pile	Natural geology of the site.	3	3	9	Deep excavations should be supported when granular soils are present. CFA piling and / or use of bentonite drilling fluid should be used to construct piles.	1	2	2
RISK = PI	robability x im	ipact (also s	see CIRIA SP125)							
16-25	Very High Risk	Unaccepta	ble. Re-examine activitie	es to	pro	vide	lower risk.			
9-15	High risk		igation measures requirers if risk cannot be redu		nd/c	r alte	er method of work. Seek approval from all			
6-8	Medium Risk		Tolerable only if further mitigation is not reasonably practical and there is need to continue activity with identified controls.							
1-5	Low Risk	Broadly ac	ceptable if all reasonabl	y pra	actic	able	control measures in place.			


10. References

- 1. Wroth, C. P. and Wood, D. M. (1978), The correlation of index properties with some basic engineering properties of soils, Canadian Geotechnical Journal, 15: 137-145.
- 2. Terzaghi, K. and Peck, R. B. (1967). Soil mechanics in engineering practice, 2nd edition, Wiley International, New York.
- 3. British Standards Institute (2015), BS 8002: 2015 Code of Practice for Earth Retaining Structures, British Standards Institute.
- 4. Peck, R.B., Hanson, W.E. & Thornburn, T.H., (1974) Foundation Engineering. John Wiley & Sons.
- 5. CIRIA 143 (1995) the Standard Penetration Test (SPT): Methods and use.
- 6. Look, B (2007) Handbook of Geotechnical Investigation and Design Tables
- 7. Hobbs, N.B, (1974) Proceedings of a Conference on Settlement of Structures
- 8. ISTM Suggested Method of Point Load Strength 1974-2006
- 9. UK Specification for Ground Investigation, Second Edition (2012). ICE Publishing.
- 10. BRE Construction Division (2005), Concrete in Aggressive Ground, Special Digest 1:2005, 3rd Edition.
- 11. British Standards Institute (1990), BS 1377-2 Methods of test for Soils for civil engineering purposes Part 2: Classification tests: British Standards Institute.
- 12. CIRIA C574 (2002) Engineering in Chalk
- 13. BS8004:2015. Code of Practice for Foundations
- 14. BS EN 1997-1:2004. Eurocode 7: Geotechnical Design
- 15. Foundation Design and Construction. MJ Tomlinson, 7th Edition. 2001
- 16. BS 8485:2015. Code of Practice for the design of protective measures for methane and carbon dioxide ground gases for new buildings
- 17. CIRIA C665:2007. Assessing risks posed by hazardous ground gases to buildings

Appendix A Site Location Plan/Proposed Site Layout Plan

Appendix B Risk Assessment Principles

Risk Assessment Principles

Current good practice recommends that the determination of hazards due to contaminated land is based on the principle of risk assessment, as outlined in the Environment Agency guidance on Model Procedures for the Management of Land Contamination (CLR 11).

For a risk to be present, there must be a viable pollutant linkage; i.e. a mechanism whereby a source impacts on a sensitive receptor via a pathway.

Assessments of risks associated with each of these pollutant linkages are discussed in the following sections.

Using criteria broadly based on those presented in EA, Chartered Institute of Environmental Health (CIEH) and National House Building Council (NHBC) R&D Publication 66 'Guidance for the Safe Development of Housing on Land Affected by Contamination' (2008), the magnitude of the risk associated with potential contamination at the site has been assessed. To do this an estimate is made of:

- · The magnitude of the potential consequence (i.e. severity); and
- · The magnitude of probability (i.e. likelihood).

The severity of the risk is classified according to the criteria in **Table C1**, below:

1. Table C1: Summary of Potential Pollutant Linkages

- SEVERITY	- DEFINITION AND EXAMPLES
Severe	 Acute risks to human health, likely to result in "significant harm" (e.g. very high concentrations of contaminants/ground gases) Catastrophic damage to buildings/property (e.g. by explosion, sites with high gassing potential, extensive VOC contamination) Major pollution of controlled waters (e.g. surface watercourses or Principal aquifers/source protection zones) Short term risk to a particular ecosystem
Medium	 Chronic (long-term) risk to human health likely to result in "significant harm" (e.g. elevated concentration of contaminants/ground gases) Pollution of sensitive controlled waters (e.g. surface watercourses or Principal/ Secondary aquifers) Significant effects on sensitive ecosystems or species
Mild	 Pollution of non-sensitive waters (e.g. smaller surface watercourses or non-aquifers) Significant damage to crops, buildings, structures or services (e.g. by explosion, sites with medium gassing potential, elevated concentrations of contaminants)
Minor	 Non-permanent human health effects (requirement for protective equipment during site works to mitigate health effects) Damage to non-sensitive ecosystems or species Minor (easily repairable) damage to buildings, structures or services (e.g. by explosion, sites with low gassing potential)

The probability of the risk occurring is classified according to the criteria in Table C2, below:

2. Table C2: Likelihood of Risk Occurrence

- LIKELIHOOD	- EXPLANATION
High	- Contaminant linkage may be present that appears very likely in the short-term and risk is almost certain to occur in the long term, or there is evidence of harm to the receptor
Likely	- Contaminant linkage may be present, and it is probable that the risk will occur over the long term
Low	- Contaminant linkage may be present and there is a possibility of the risk occurring, although there is no certainty that it will do so.
Unlikely	- Contaminant linkage may be present but the circumstances under which harm would occur even in the long-term are improbable.

An overall evaluation of the level of risk is gained from a comparison of the severity and probability, as shown in **Table C3**, below:

3. Table C3: Risk Based on Comparison of Likelihood and Severity

		SEVERITY			
		SEVERE	MEDIUM	MILD	MINOR
ГІКЕГІНООБ	HIGH	Very High	High	Moderate	Moderate/Low
	LIKELY	High	Moderate	Moderate/Low	Low
	LOW	Moderate	Moderate/Low	Low	Very Low
	UNLIKELY	Moderate/Low	Low	Very Low	Very Low

Appendix C Factual Report

VPI IMMINGHAM

FACTUAL REPORT ON GROUND INVESTIGATION

Report No A8015-18

August 2018

Client: AECOM Environmental Solutions Ltd, AECOM House, 66-77 Victoria Street, St Albans, AL1 3ER

SOCOTEC UK Limited

Askern Road, Carcroft
Doncaster DN6 8DG
Tel: +44 (0) 1302 723456
email: geo.doncaster@socotec.com

Report No A8015-18

August 2018

Issue No Date	Status	Prepared by	Checked by	Approved by
		NAME and QUALIFICATIONS	NAME and QUALIFICATIONS	NAME and QUALIFICATIONS
1	Day 6	W Hopkins BSc (Hons) T Clifford BEng FGS		T Clifford BEng FGS
Jul 2018	Draft report	SIGNATURE Walfyuis	SIGNATURE	SIGNATURE
		NAME and QUALIFICATIONS	NAME and QUALIFICATIONS	NAME and QUALIFICATIONS
2	Final report	W Hopkins BSc (Hons)	T Clifford BEng FGS	T Clifford BEng FGS
Aug 2018		SIGNATURE	SIGNATURE	SIGNATURE
		Waltopies	- El	-611

This Report has been prepared by SOCOTEC UK Limited ("SOCOTEC") with all reasonable skill and care, within the terms and conditions of the contract between SOCOTEC and the Client ("Contract") and within the limitations of the resources devoted to it by agreement with the Client.

This Report shall not be used for engineering or contractual purposes unless the Report status is 'Final' and signed by the author, checker and the approver for and on behalf of SOCOTEC.

Whilst every effort has been made to ensure the accuracy of the data supplied and any analysis interpretation derived from it, the possibility exists of variations in the ground and groundwater conditions around and between the exploratory positions. SOCOTEC shall not be liable for any use of the Report for any purpose other than that for which it was originally prepared. No liability can be accepted for any such variations in these conditions. Furthermore, any recommendations are specific to the development as detailed in this Report and no liability will be accepted should they be used for the design of alternative schemes without prior consultant with SOCOTEC.

This Report is confidential between the Client and SOCOTEC. Any reliance upon the Report is subject to the Contract terms and conditions.

SOCOTEC accepts no responsibility whatsoever to third parties to whom this document, or any part thereof, is made known. Any such party relies upon the Report at their own risk. The Contracts (Rights of Third Parties) Act 1999 does not apply to this Report nor the Contract and the provisions of the said Act are hereby excluded.

Unless specifically assigned or transferred within the terms and conditions of the Contract, SOCOTEC asserts and retains all Copyright and other Intellectual Property Rights in and over the Report and its contents. The Report may not be copied or reproduced, in whole or in part, without the written authorisation from SOCOTEC.

SOCOTEC UK Limited was formerly known as Environmental Scientifics Group Limited. The Certificate of Incorporation on Change of Name was filed on 16 October 2017.

CONTENTS

			Page
1	INTRODUCTION		1
2	SITE SETTING		
	2.1 Location and Descrip2.2 Published Geology	ption	1 2
3	FIELDWORK		2
	3.2 Exploratory Holes	- Manufactura	2
4		as Monitoring	
REFE	ERENCES		4

APPENDIX A FIGURES AND DRAWINGS

APPENDIX B EXPLORATORY HOLE RECORDS

APPENDIX C INSTRUMENTATION AND MONITORING

APPENDIX D GEOTECHNICAL LABORATORY TEST RESULTS

APPENDIX E PHOTOGRAPHS

1 INTRODUCTION

In March 2018 SOCOTEC UK Limited was commissioned by AECOM Environmental Solutions Ltd (AECOM) on behalf of VPI Immingham, to carry out a ground investigation at Total Lindsey Oil Refinery (TLOR). The investigation was required to obtain geotechnical information for the proposed development.

The scope of the investigation was specified by AECOM and comprised cable percussion and rotary drilled boreholes, trial pits and laboratory testing. The investigation was performed in accordance with the contract specification, and the general requirements of BS 5930 (2015), BS EN 1997-2 (2007), BS EN ISO 22475-1 (2006) and other relevant related standards identified below. The fieldwork took place between 5 and 20 April.

This report presents the factual records of the fieldwork and laboratory testing. The information is also presented as digital data as defined in AGS (2017).

2 SITE SETTING

2.1 Location and Description

The site is adjacent to the east side of Total Lindsey Oil Refinery, approximately 4 km north west of Immingham town centre, Lincolnshire. The National Grid reference is TA 167 175, see Site Location Plan in Appendix A.

The site is a L-shaped parcel of land, approximately 350 by 200 m, and generally flat and level.

The majority of the site, the southern portion (about 350 by 120 m), comprises rough grass and scrub land, which is it is boggy in places. There are several soil mounds, up to about 5 m in height.

The north west portion is within the perimeter fence of the adjacent car park, and comprises a compacted generally flat hardcore surface with very little vegetation.

To the north the site is bound by a carpark, belonging to TLOR, and to the west is infrastructure associated with the refinery, including access roads, railway lines, plant and equipment. To the south is VPI Immingham, a power generation facility. To the east is open farmland and the Humber Estuary beyond, approximately 500 m away.

Report No A8015-18

Page 2 of 4

2.2 Published Geology

The published geological map for the area, BGS Sheet 90 (1990) and the BGS Geology of Britain Viewer (2018) show the site located on Glacial Till over bedrock of the Burnham Chalk Formation.

3 FIELDWORK

3.1 General

The exploratory hole locations were selected by AECOM and set out from local features. The coordinates and reduced levels were surveyed by SOCOTEC to National Grid and Ordnance Datum and the locations are shown on the Site Plan in Appendix A

3.2 Exploratory Holes

The exploratory holes are listed in the following table.

TABLE 1: SUMMARY OF EXPLORATORY HOLES

ТҮРЕ	QUANTITY	DEPTH RANGE (m)	REMARKS
Cable Percussion Boring	3	22.34 to 28.66	BH1, BH2 and BH5
Cable Percussion Boring extended by Rotary Core Drilling/Open Hole Drilling	3	28.60 to 34.60	BH3, BH4 and BH6
Dynamic Sampling	8	3.75 to 5.45	WS1 to WS8
Trial Pits/ Trenches	13	2.50 to 4.60	TP1 to TP10 and TT1 to TT3

The exploratory hole logs are presented in Appendix B. These provide information including the equipment and methods used, samples taken, tests carried out, water observations and descriptions of the strata encountered. Explanation of the terms and abbreviations used on the logs is given in the Key to Exploratory Hole Records in Appendix B, together with other explanatory information. The logging of soil and rock materials is in accordance with BS 5930 (2015).

Standard penetration tests (SPT) in the boreholes were carried out in accordance with BS EN ISO 22476-3+A1 (2011) and the SPT hammer energy ratio certificate is included in Appendix B. The SPT results are presented on the logs as uncorrected N values.

Photographs of the trial pits and rotary drilled core are presented in Appendix E.

On completion of the fieldwork geotechnical samples were transported to the Doncaster laboratory of SOCOTEC for testing and temporary retention.

3.3 **Groundwater and Gas Monitoring**

Instrumentation installed in the exploratory holes for groundwater and gas monitoring are shown on the logs and summarised in Appendix C. SOCOTEC were not required to undertake any post fieldwork.

LABORATORY TESTING 4

Geotechnical laboratory testing was scheduled by AECOM and was carried out in accordance with BS 1377 (1990), unless otherwise stated. The testing is summarised below and the results are presented in Appendix E.

- Moisture Content Determination
- Atterberg Limit Determination
- Particle Density
- Particle Size Distribution Analysis
- **Unconsolidated Undrained Triaxial Compression Testing**
- Consolidated Undrained Triaxial Compression Testing
- One Dimensional Oedometer Consolidation Testing
- Determination of Consolidation Properties Using a Hydraulic Cell
- Dry Density / Moisture Content Relationship
- California Bearing Ratio
- pH, Water Soluble Sulphate, Acid Soluble Sulphate and Total Sulphur Content of Soils Test methods are BS 1377 or others recognised in BRE Special Digest 1 (2005)
- Loss on Ignition
- Organic Matter

REFERENCES

AGS: 2017: Electronic transfer of geotechnical and geoenvironmental data (Edition 4.0.4 February 2017). Association of Geotechnical and Geoenvironmental Specialists.

BGS England and Wales Sheet 90 : 1990 : Grimsby. 1:50,000 geological map (solid and drift). British Geological Survey.

BGS Geology of Britain Viewer: 2018. www.bgs.ac.uk. British Geological Survey.

BRE Special Digest 1 : 2005 : Concrete in aggressive ground. Building Research Establishment.

BS 1377 : 1990 : Methods of test for soils for civil engineering purposes. British Standards Institution.

BS 5930 : 2015 : Code of practice for ground investigations. British Standards Institution.

BS EN 1997-2: 2007: Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing. British Standards Institution.

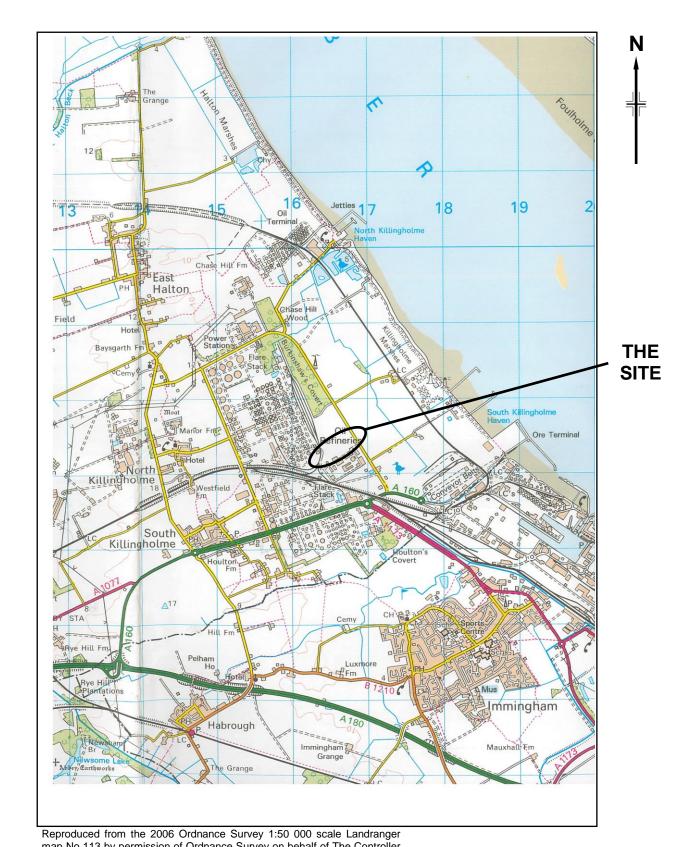
BS EN ISO 14688-1:2002+A1: 2013: Geotechnical investigation and testing - Identification and classification of soil - Part 1 Identification and description. British Standards Institution.

BS EN ISO 14688-2:2004+A1: 2013: Geotechnical investigation and testing - Identification and classification of soil - Part 2 Principles for a classification. British Standards Institution.

BS EN ISO 14689-1: 2003: Geotechnical investigation and testing - Identification and classification of rock - Part 1 Identification and description. British Standards Institution.

BS EN ISO 22475-1 : 2006 : Geotechnical investigation and testing – Sampling methods and groundwater measurements - Part 1 Technical principles for execution. British Standards Institution.

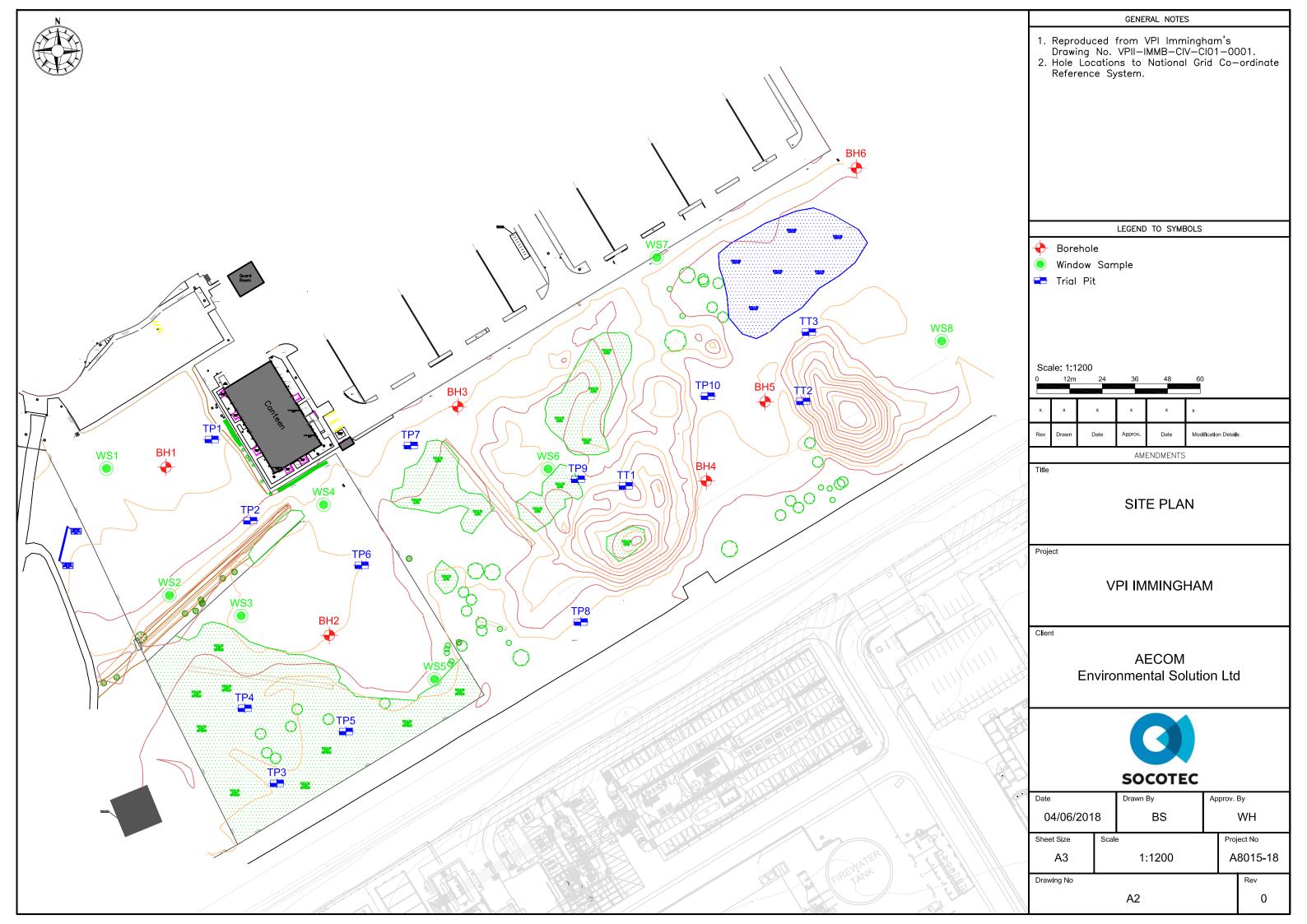
BS EN ISO 22476-3:2005+A1 : 2011 : Geotechnical investigation and testing - Field testing - Part 3 Standard penetration test. British Standards Institution.



APPENDIX A FIGURES AND DRAWINGS

Site Location Plan	A1
Site Plan	A2

Site Location Plan


Reproduced from the 2006 Ordnance Survey 1:50 000 scale Landranger map No 113 by permission of Ordnance Survey on behalf of The Controller of Her Majesty's Stationery Office, © Crown copyright, Environmental Services Group Limited. All rights reserved. Licence Number 100006060

Notes:
Scale 1:50 000

Project VPI IMMINGHAM
Project No. A8015-18
Carried out for AECOM

Figure

A1

APPENDIX B EXPLORATORY HOLE RECORDS

Key to Exploratory Hole Records Key

SPT Hammer Energy Ratio Report SPT Hammer Reference: SW15470

AR2068 DART235

Borehole Logs BH1 to BH6

Borehole Logs (Dynamic Sampling) WS1 to WS8

Trial Pit and Trench Logs TP1 to TP10 and TT1 to TT3

Key to Exploratory Hole Records

SAMPLES

Undisturbed

U Driven tube sample

UT Driven thin wall tube sample nominally 100 mm diameter and full recovery unless otherwise stated Pushed thin wall tube sample

P Pushed piston sample

L Liner sample from dynamic (windowless) sampling. Full recovery unless otherwise stated

CBR CBR mould sample BLK Block sample

C / CS Core sample (from rotary core) taken for laboratory testing.

AMAL Amalgamated sample

Disturbed

D Small sample B Bulk sample

Other

W Water sample G Gas sample

Environmental chemistry samples (in more than one container where appropriate)

ES Soil sample EW Water sample

Comments Sample reference numbers are assigned to every sample taken. A sample reference of 'NR' indicates that, while an

attempt was made to take a tube sample, there was no recovery.

Samples taken from borehole installations (ie water or gas) after hole construction are not shown on the exploratory

hole logs.

Specimens for point load testing undertaken on site (or other non-lab location) are not shown on the log.

IN SITU TESTS

SPT S or SPT C Standard Penetration Test, open shoe (S) or solid cone (C)

The Standard Penetration Test is defined in BS EN ISO 22476-3:2005+A1:2011.

The incremental blow counts are given in the Field Records column; each increment is 75 mm unless stated otherwise and any penetration under self-weight in mm (SW) is noted. Where the full 300 mm test drive is achieved the total number of blows for the test drive is presented as N = ** in the Test column. Where the test drive blows reach 50 the

total blow count beyond the seating drive is given (without the N = prefix).

IV in situ vane shear strength, peak (p) and remoulded (r)
HV Hand vane shear strength, peak (p) and remoulded (r)
PP Pocket penetrometer test, converted to shear strength

KFH, KRH, KPI Permeability tests (KFH = falling head, KRH = rising head; KPI = packer inflow);

results provided in Field Records column (one value per stage for packer tests)

DRILLING RECORDS

The mechanical indices (TCR/SCR/RQD & If) are defined in BS 5930:2015

TCR Total Core Recovery, % SCR Solid Core Recovery, % RQD Rock Quality Designation, %

If Fracture spacing, mm. Minimum, typical and maximum spacing measurements are presented.

NI The term non-intact (NI) is used where the core is fragmented.

NA Used where a measurement is not applicable (eg. If, SCR and RQD in non-rock materials).

Flush returns, estimated percentage with colour where relevant, are given in the Records column

CRF Core recovered (length in m) in the following run

AZCL Assessed zone of core loss

GROUNDWATER

Groundwater entry

Depth to groundwater after standing period

Notes:

See report text for full references of standards.

Updated October 2017

Project VPI Immingham

Project No. A8015-18
Carried out for AECOM Environmental Solutions Ltd

Key
Sheet 1 of 3

Key to Exploratory Hole Records

INSTALLATION

Details of standpipe/piezometer installations are given on the Record. Legend column shows installed instrument depths including slotted pipe section or tip depth, response zone filter material type and layers of backfill.

Standpipe/ piezometer

The type of instrument installed is indicated by a code in the Legend column at the depth of the response zone:

Standpipe

SPIE PPIE **EPIE** Standpipe piezometer Pneumatic piezometer Electronic piezometer

Pipe

Slotted

Piezometer qiT

Inclinometer or Slip Indicator

The installation of vertical profiling instruments is indicated on the Record. The base of tubing is shown in the Legend

column.

ICE

The type of instrument installed is indicated by a code in the Legend column at the base of the tubing: Biaxial inclinometer

ICM

Inclinometer tubing for use with probe Slip indicator

SLIP

Settlement Points or

The installation of single point instruments is indicated on the Record. The location of the measuring device is shown in the

Legend column.

Pressure Cells

The type of instrument installed is indicated by a code in the Legend column:

ESET Electronic settlement cell/gauge

ETM Magnetic extensometer settlement point **EPCE** Electronic embedment pressure cell **PPCE** Electronic push in pressure cell

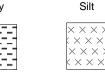
INSTALLATION / BACKFILL LEGENDS

A legend describing the installation is shown in the rightmost column. Legend symbols used to describe the backfill materials are indicated below.

Concrete

Topsoil

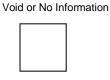
Made Ground / Fill

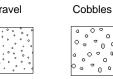


STRATUM LEGENDS

The legend symbols used for graphical representation of soils, rocks and other materials on the borehole logs are shown below. For soils with significant proportions of secondary soil types, a combination of two or more symbols may be used.

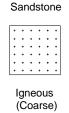
Macadam
簽
Clay

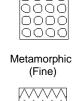



Peat

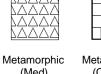
____ Mudstone

Breccia


Limestone



(Fine)



Conglomerate

0000

Notes:

See report text for full references of standards.

Updated October 2017

Project

VPI Immingham

A8015-18 Project No.

Carried out for **AECOM Environmental Solutions Ltd** Key

Key to Exploratory Hole Records

	SOCOTEC
NOTES	
1	Soils and rocks are described in accordance with BS EN ISO 14688-1:2002+A1:2013 and 14689-1:2003 respectively as amplified by BS 5930:2015.
2	For fine soils, consistency determined during description is reported for those strata where undisturbed samples are available. Where the logger considers that the sample may not be representative of the condition in situ, for whatever reason, the reported consistency is given in brackets. The reliability of the sample is indicated by Probably or Possibly as appropriate. Hence (Probably firm) indicates the logger is reasonably confident of the assessment, but (Possibly firm) means less certainty. Where the samples available are too disturbed to allow a reasonable assessment of the in situ condition, no consistency is given.
3	Evidence of the occurrence of very coarse particles (cobbles and boulders) is presented on the logs. However, because of their size in relation to the exploratory hole these records may not be fully representative of their size and frequency in the ground mass.
4	The declination of bedding and joints is given with respect to the normal to the core axis. Thus in a vertical borehole this will be the dip.
5	The assessment of SCR, RQD and Fracture Spacing excludes artificial fractures.
6	Observations of discernible groundwater entries during the advancement of the exploratory hole are given at the foot of the log and in the Legend column. The absence of a recorded groundwater entry should not, however, be interpreted as a groundwater level below the base of the borehole. Under certain conditions groundwater entry may not be observed, for instance, drilling with water flush or overwater, or boring at a rate faster than water can accumulate in the borehole. Similarly, where water entry observations do exist, groundwater may also be present at higher elevations in the ground than where recorded in the borehole. In addition, where appropriate, water levels in the hole at the time of recovering individual samples or carrying out in situ tests and at shift changes are given in the Records column.
7	The borehole logs present the results of Standard Penetration Tests recorded in the field without correction or interpretation. However, in certain ground conditions (eg high hydraulic head or where very coarse particles are present) some judgement may be necessary in considering whether the results are representative of in situ mass conditions.
REFERENCES	
1	BS EN ISO 14688-1:2002+A1 : 2013 : Geotechnical investigation and testing - Identification and classification of soil. Part 1 Identification and description. British Standards Institution
2	BS EN ISO 14689-1 : 2003 : Geotechnical investigation and testing - Identification and classification of rock. Part 1 Identification and description. British Standards Institution

	Part 1 Identification and description. British Standards Institution
2	BS EN ISO 14689-1 : 2003 : Geotechnical investigation and testing - Identification and classification of rock. Part 1 Identification and description. British Standards Institution
3	BS EN ISO 22476-3:2005+A1 : 2011 : Geotechnical investigation and testing - Field testing. Part 3 Standard penetration test. British Standards Institution
4	BS 5930 : 2015 : Code of practice for ground investigations. British Standards Institution

SPT Hammer Energy Test Report

in accordance with BSEN ISO 22476-3:2005

ARCHWAY ENGINEERING AINLEYS INDUSTRIAL ESTATE ELLAND

WEST YORKSHIRE

HX5 9JP

SPT Hammer Ref: AR1940

Test Date:

21/09/2017

Report Date:

21/09/2017

File Name:

AR1940.spt

Test Operator:

SH

Instrumented Rod Data

Diameter d_r (mm):

54

Wall Thickness t_r (mm):

6.0

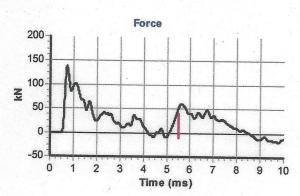
Assumed Modulus Ea (GPa): 200

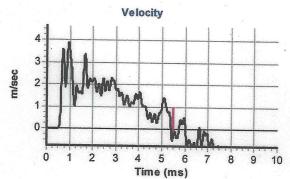
7080

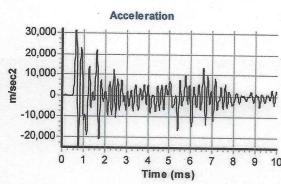
Accelerometer No.1: Accelerometer No.2:

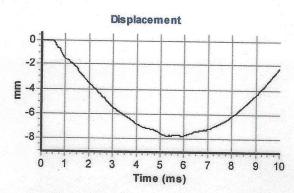
11609

SPT Hammer Information


Hammer Mass m (kg): 63.5


Falling Height h (mm): 760


SPT String Length L (m): 10.0


Comments / Location

CALIBRATION

Calculations

Area of Rod A (mm2):

905

Theoretical Energy E_{theor} (J):

473

Measured Energy E_{meas} (J):

332

Signed: M.GARDNER

Title:

70

FITTER

Energy Ratio E_r (%):

The recommended calibration interval is 12 months

SPT Hammer Energy Test Report

in accordance with BSEN ISO 22476-3:2005

ARCHWAY ENGINEERING AINLEYS INDUSTRIAL ESTATE

ELLAND

WEST YORKSHIRE

HX5 9JP

SPT Hammer Ref: AR2068

Test Date:

15/12/2017

Report Date:

15/12/2017

File Name:

AR2068.spt

Test Operator:

SH

Instrumented Rod Data

Diameter dr (mm):

54

Wall Thickness t_r (mm):

6.0

Assumed Modulus Ea (GPa): 200

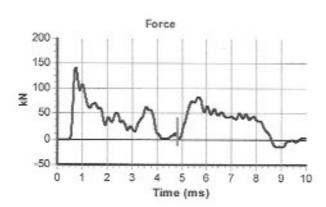
Accelerometer No.1:

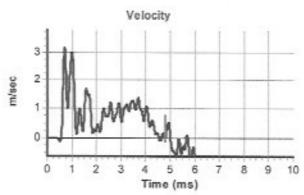
7080

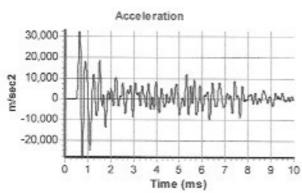
Accelerometer No.2:

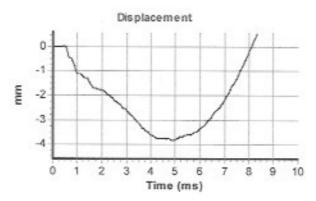
11609

SPT Hammer Information


Hammer Mass m (kg): 63.5


Falling Height h (mm): 760


SPT String Length L (m): 10.0


Comments / Location

CALIBRATION

Calculations

Area of Rod A (mm2):

905

Theoretical Energy Etheor (J):

473

Measured Energy E_{meas} (J):

296

Energy Ratio E, (%):

63

Signed: M.GARDNER

Title:

FITTER

The recommended calibration interval is 12 months

SPT Hammer Energy Test Report

13/04/2017

13/04/2017

DART235.spt

SH

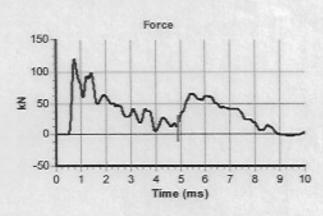
in accordance with BSEN ISO 22476-3:2005

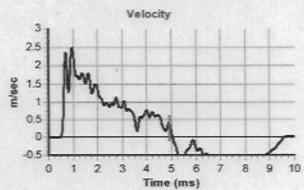
ARCHWAY ENGINEERING AINLEYS INDUSTRIAL ESTATE ELLAND

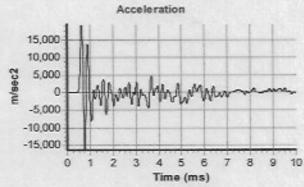
Instrumented Rod Data

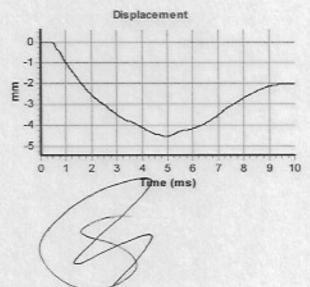
Report Date: WEST YORKSHIRE File Name: HX59JP Test Operator:

SPT Hammer Information


SPT Hammer Ref: DART235


Test Date:


Diameter d_r (mm): 54 Hammer Mass m (kg): 63.5 Falling Height h (mm): 760 Wall Thickness tr (mm): 6.0 SPT String Length L (m): 10.0 Assumed Modulus Ea (GPa): 208


Accelerometer No.1: 7080 Comments / Location

Accelerometer No.2: 11609 CALIBRATION

Calculations

Area of Rod A (mm2): 905 Theoretical Energy Etheor (J): 473 Measured Energy E_{meas} (J): 276

Energy Ratio E r (%): 58 Signed: S. HOWARTH Title: FITTER

The recommended calibration interval is 12 months

Drilled GC Start quipment, Methods and Remarks Depth from Casing Depth Ground Level (m) 1.20 14.00 (m) 14.00 28.50 (mm) 200 150 (m) 14.00 28.50 Dando 2000. Cable percussion boring. SPT Hammer ID: AR1940, Rod type: 54mm Whitworth. MJS .oaaed 05/04/2018 Coordinates (m) E 516528.04 TC National Grid N 417415.39 Checked End Approved TO 11/04/2018 Samples and Tests Strata Description Backfill Depth, Level Legend Type & No. Records Detail Casing Wate Brown sandy clayey GRAVEL. Gravel is angular 0.10 (0.10) 0.20 - 0.40 B 2 to subangular fine to coarse of chalk and (0.35)limestone. (MADE GROUND) 0.45 +5.91 (IMADE GROUND)

Brown, locally greyish brown, slightly sandy gravelly CLAY. Gravel is angular fine to coarse of chalk and mudstone. Strong hydrocarbon odour. (IMADE GROUND) 0.50 - 0.70 (0.65) 1.00 - 1.20 B 5 05/04/18 Greyish brown, locally dark grey, slightly sandy slightly gravelly CLAY. Gravel is angular to subangular fine to coarse of slag, mudstone, 1.10-1.20 locally 1.10 +5.26 dark grey, occasional rootlets 52 blows 100% rec _____ 06/04/18 sandstone and chalk. Strong hydrocarbon odour. (MADE GROUND) Stiff brown, locally mottled light grey, slightly sandy slightly gravelly CLAY. Gravel is angular to subrounded fine to coarse of quartz, mudstone, 2.00 - 2.45 2.00 - 2.45 N=25 (3,4/5,6,7,7) 1.70 sandstone and chalk. (2.70) 56 blows 100% rec 3.00 - 3.45 UT 10 2.80 Dry 3.45 - 3.60 D 11 3.80 W 14 +2.56 4.00 (0.20) 3.80 Thinly laminated brown, locally light grey, CLAY with frequent gravel size pockets of fine to coarse 4.00 - 4.45 SPTS +2.36 3.90 Dry N=14 (2,2/3,3,4,4) D 12 B 13 4.00 - 4.45 Stiff, becoming very stiff, greyish brown slightly sandy slightly gravelly CLAY. Gravel is angular to subrounded fine to coarse of chalk, sandstone, mudstone and quartz. 5.00 - 5.45 UT 15 50 blows 100% rec 4.70 Dry 5.45 - 5.60 D 16 2 平 N=14 (2,2/3,3,4,4) 4.70 Dry 7.00 - 7.50 7.10-8.40 locally 7.20 8.00 - 8.45 38 blows 100% rec 4.70 Dry B 21 W 21A (9.00) 3 7 9.50 - 9.95 9.50 - 9.95 9.50 - 10.00 SPTS N=14 (2,3/3,3,4,4) 9.20 Dry **Groundwater Entries** Depth Related Remarks Depth Strike (m) Remarks Duration (mins) Tools used Depth Sealed (m) Depths (m) Remarks Depths (m) No. Rose to 2.30 m after 20 minutes. Medium inflow Rose to 6.30 m after 20 minutes. Medium 3.80 4.00 8.50 inflow VPI IMMINGHAM Notes: For explanation of symbols and abbreviations Project Borehole

see Key to Exploratory Hole Records. All depths and reduced levels in metres. Stratum thickness given in brackets in depth column. © Copyright SOCOTEC UK Limited AGS

Project No A8015-18 Carried out for AECOM

BH1 Sheet 1 of 3

Drilled GC Start quipment, Methods and Remarks Depth from Casing Depth Ground Level (m) 14.00 28.50 (m) 1.20 14.00 (mm) 200 150 (m) 14.00 28.50 Dando 2000. Cable percussion boring. SPT Hammer ID: AR1940, Rod type: 54mm Whitworth. MJS .oaaed 05/04/2018 Coordinates (m) E 516528.04 TC National Grid N 417415.39 Checked End Approved TO 11/04/2018 Samples and Tests Strata Description Depth, Level Backfill Legend Type & No. Records Detail Casing Wate Stiff, becoming very stiff, greyish brown slightly sandy slightly gravelly CLAY. Gravel is angular to subrounded fine to coarse of chalk, sandstone, mudstone and quartz. 11.00 - 11.45 40 blows 100% rec 9.20 12.50 - 12.95 12.50 - 12.95 N=31 (5,5/6,7,8,10) 9.20 Dry Б, 13.00 -6.64 13.00 D 28 B 27 Medium dense brown gravelly very silty fine to coarse SAND. Gravel is angular to subrounded fine to coarse of chalk and flint. Ō 13.00 - 13.50 Ö 0 3 🕏 13.50 W 30 Ō (1.80)SPTS N=10 (3,3/2,3,2,3) 9.20 10.00 14.00 - 14.45 14.00 - 14.45 Ö 06/04/18 1800 9.20 10.00 О 09/04/18 0 0800 Ō 14 80 D 31 14 80 -8 44 Ö Medium dense brown sandy slightly clayey GRAVEL. Gravel is angular to subangular fine to 15.00 - 15.50 B 32 coarse of flint and chalk. (0.90)15.50 - 15.95 15.50 - 15.95 N=28 (3,3/5,5,8,10) 15.00 10.00 15.70 -9.34 Very stiff brown slightly sandy slightly gravelly CLAY. Gravel is subangular to subrounded fine to coarse of chalk and rare flint. 16.00 - 17.00 17.00 - 17.45 78 blows 100% rec 15.00 greyish brown 17.45 - 17.60 D 36 18.50 - 18.77 18.50 - 18.77 18.50 - 19.00 SPTS D 37 B 38 50 (15,10 for 50mm/23,27 for 70mm) 18.00 17.00 (5.80) Depth Related Remarks **Groundwater Entries** No. Depth Strike (m) Remarks Depth Sealed (m) Depths (m) Depths (m) Remarks Duration (mins) Tools used Rose to 9.00 m after 20 minutes. Fast inflow 14.50 - 14.80 60 Notes: For explanation of symbols and abbreviations VPI IMMINGHAM Project Borehole see Key to Exploratory Hole Records. All depths and reduced levels in metres. Stratum thickness given in brackets in depth column. BH1 © Copyright SOCOTEC UK Limited AGS Project No. A8015-18

Carried out for

AECOM

Depth from (m) 1.20 14.00 Diameter (mm) 200 150 Casing Depth (m) 14.00 28.50 Drilled GC Start Equipment, Methods and Remarks Ground Level to (m) 14.00 28.50 Dando 2000. Cable percussion boring. SPT Hammer ID: AR1940, Rod type: 54mm Whitworth. Logged MJS 05/04/2018 Coordinates (m) E 516528.04 Checked TC National Grid N 417415.39 End

Approved TC		11/04/2018								
Samples	and	Tests	1	Data		Strata Description				
Depti	th	Type & No.	Records	Date Casing	Time Water	Main	Detail	Depth, Level (Thickness)	Legend	Backfill
20.00 - 2		UT 39	100 blows 56% rec	19.50	19.50	Very stiff brown slightly sandy slightly gravelly CLAY. Gravel is subangular to subrounded fine to coarse of chalk and rare flint.	- - - -			
 		B 41					- - - - -		4	
- 21.50 - 2 - 21.50 - 2 		SPTS D 42	50 (10,15 for 60mm/22,25,3 for 5mm)	19.50	20.00	Very stiff light grey slightly sandy gravelly slity CLAY. Gravel is subangular to subrounded fine to coarse of chalk.	- - - - - -	21.50 -15.1	X X X X X X	
– – 22.50 - 2 – 22.50		SPTS UT NR	50 (25 for 75mm/28,22 for 55mm)	09/04/18 19.50	1800 20.00				<u> </u>	
- 22.50 - 2		D 43	100 blows No Recovery	10/04/18	0800		-			
- - 23.00 - 2	24.00	B 44		19.50	9.00		- - - - - - -			
— 24.00 - 2 - 24.00 - 2 		SPTS D 45	50 (15,10 for 45mm/20,27,3 for 5mm)	23.50	10.00			(6.00)		
		SPTS D 46	50 (20,5 for 15mm/25,25 for 60mm)	24.90	8.00		25.50 recovered as — clayey angular fine — to coarse gravel —		x - x - x - x - x - x - x - x - x - x -	
26.00 - 2 - 26.00 - 2 - 26.00 - 2 	26.22	SPTS D 47 B 48	50 (25 for 75mm/27,23 for 65mm)	25.90 10/04/18 25.90 11/04/18 25.90	8.00 1700 8.00 0800 4.00					
- 27.50 - 2 - 27.50 - 2 - 27.50 - 2 - 27.50 - 2	27.78	SPTS D 49 B 50	50 (15,10 for 50mm/22,24,4 for 5mm)	27.50	7.00	Extremely weak to very weak white CHALK. Recovered as gravelly clay. Gravel is angular to subangular fine to coarse.	- - - - - - -	27.50 -21.14 (1.16)		
- - 28.50 - 2 - 28.50 - 2		SPTS D 51	50 (25 for 60mm/38,12 for 20mm)	11/04/18 28.50	1500 9.00			28.66 -22.3		
- - - - - - - - - - - -						END OF EXPLORATORY HOLE	- - - - - - - - - - - - - - - - - - -			
Groundwater	Entries					Depth Related Remarks		Hard Boring		_
No. Depth		n) Remarks Rose to 19.80 m inflow	a after 20 minutes. Medium	Depth Seale	d (m)	Depths (m) Remarks		Depths (m) 24.50 - 26.00 26.50 - 27.50	Duration (mins) 180 120	Tools used Chisel Chisel
see Key to Exp	oloratory I	of symbols and abb	epths and		VPI	MMINGHAM		Borehole		
reduced levels brackets in dep Scale 1:50	in metres oth colum © Copy	s. Stratum thicknes in. rright SOCOTEC U	s given in K Limited AGS Project I		A80	15-18 OM			BH1 Sheet 3 of 3	
JOUIG 1.00		14/08/20	18 13:42:20						JIIGGE J VI J	

Drilled GC Start quipment, Methods and Remarks Depth from Casing Depth Ground Level (m) 1.20 14.50 (m) 14.50 22.20 (mm) 200 150 Dando 2000. Cable percussion boring. SPT Hammer ID: AR1940, Rod type: 54mm Whitworth. WH .oaaed 11/04/2018 Coordinates (m) E 516588.10 22.20 TC National Grid N 417353.62 Checked End Approved TO Samples and Tests Strata Description Backfill Depth, Level Legend Depth Type & No. Records Detail Casing Wate Dark brown sandy very gravelly CLAY with high cobble content. Gravel is subrounded fine to 0.20 0.30 - 0.50 (0.50)coarse of various lithologies including chalk, macadam and sandstone. Cobbles are 0.50 +4.93 0.60 0.60 - 1.00 (MADE GROUND) (0.50)Dark brown and black very gravelly very silty fine to coarse SAND. Gravel is subangular fine to 1.00 1.00 - 1.20 1.20 - 1.65 D 5 B 6 UT 7 1.00 +4.43 coarse of chalk and sandstone. Strong hydrocarbon odour. 30 blows 100% rec (MADE GROUND) Firm dark greyish brown slightly sandy slightly gravelly CLAY. Gravel is angular medium of flint 1.65 - 1.80 D 8 and chalk. 1.80 - 2.25 SPTS N=13 (2,2/2,3,4,4) D 9 B 10 1.80 - 2.25 1.80 - 2.25 11/04/18 1800 1.50 28 blows No Recovery 2.00 (3.20) 2.70 - 2.80 2.80 - 3.25 2.80 - 3.25 D 12 SPTS D 14 1.70 N=15 (1,2/3,3,4,5) Dry UT 15 45 blows 100% rec 1.70 3.30 - 3.75 Dry 3.75 - 3.90 D 16 2 ₹ SPTS D 17 3.90 - 4.35 3.90 - 4.35 N=15 (6.7/4.3.3.5) 2.90 Dry Dry 4.20 +1.23 36 blows No Recovery Brown mottled grey CLAY. 4.45 slightly gravelly sandy, gravel is subangular fine of chalk and mudstone 4.45 - 4.60 D 20 (0.50)4 60 - 5 05 SPTS N=17 (2.2/3.4.4.6) 4 50 4 00 4.70 +0.73 Stiff to very stiff brown slightly sandy slightly gravelly CLAY. Gravel is subangular fine to medium of sandstone and chalk. 5.10 - 5.55 UT 28 38 blows 100% rec 5.00 4.80 5.55 - 5.70 D 29 5.70 - 6.15 5.70 - 6.15 5.70 - 6.15 SPTS N=25 (3,4/5,6,7,7) 5.60 Dr 48 blows No Recovery 6.00 Dry 7.10 - 7.55 7.10 - 7.55 7.10 - 7.55 N=22 (3,4/4,5,6,7) Dry 8.00 - 8.45 UT 36 60 blows 100% rec 6.00 Dry 8.45 - 8.60 D 37 8.60 - 9.05 8.60 - 9.05 8.60 - 9.05 SPTS N=27 (3,4/5,7,7,8) 6.00 Dry D 38 B 39 (9.40)9.50 - 9.95 UT 40 62 blows 100% rec 6.00 Drv 9.95 - 10.10 D 41 Groundwater Entries Depth Related Remarks Depth Strike (m) Remarks Depth Sealed (m) Depths (m) Remarks Depths (m) Duration (mins) Tools used No. Rose to 1.50 m after 20 minutes. Slow inflow Rose to 3.80 m after 20 minutes. Slow inflow VPI IMMINGHAM Notes: For explanation of symbols and abbreviations Project Borehole see Key to Exploratory Hole Records. All depths and reduced levels in metres. Stratum thickness given in brackets in depth column. BH2 © Copyright SOCOTEC UK Limited
1:50 Project No. A8015-18

Carried out for

AECOM

Depth from (m) 1.20 14.50 Diameter (mm) 200 150 Casing Depth (m) 14.50 22.20 Drilled GC Start Equipment, Methods and Remarks Ground Level to (m) 14.50 22.20 Dando 2000. Cable percussion boring. SPT Hammer ID: AR1940, Rod type: 54mm Whitworth. Logged WH Coordinates (m) E 516588.10 11/04/2018 Checked TC National Grid N 417353.62 End Approved TC 16/04/2018

Samples and	Tests				Strata Description				
Depth	Type & No.	Records	Date Casing	Time Water	Main	Detail	Depth, Level (Thickness)	Legend	Backfill
10.10 - 10.55	SPTS	N=22 (3,4/4,5,6,7)	6.00	Dry	Stiff to very stiff brown slightly sandy slightly	-			
10.10 - 10.55 10.10 - 10.55	D 42 B 43	-			gravelly CLAY. Gravel is subangular fine to medium of sandstone and chalk.	-			V V
					mediam of sandstone and chaix.	_			1147
						-			II JL
						-	1		V V
11.00 - 11.45	UT 44	64 blows 100% rec	6.00	Dry		_			11/11/
				•		-			
						-			IVIY
11.45 - 11.60	D 45			_		_			1147
11.60 - 12.05 11.60 - 12.05	SPTS D 46	N=23 (3,4/4,5,6,8)	6.00	Dry		-	1		II al.
11.60 - 12.05	B 47	-				-			Y Y
						_			1147
						-			HAL
12.50 12.05	UT 48	70 blave 100% rea	6.00	Des		-	-		IPIY
12.50 - 12.95	0146	70 blows 100% rec	6.00	Dry		-			11/11/
						-	1		H AL
12.95 - 13.10	D 49	-							Y Y
13.10 - 13.55 13.10 - 13.55	SPTS D 50	N=30 (4,6/6,7,8,9)	6.00	Dry		-	_		$\square A \lor$
13.10 - 13.55	B 51	-				-	-		H AL
						=			IYIY
						-			11/11/
						-			$\Pi A L$
14.00 - 14.45 14.00 - 14.60	UT NR B 53	80 blows No Recovery	6.00	Dry		_	- 14.10 -8.6	7 3	ĮKUK
14.10	W 59	-			Firm light brown sandy very gravelly CLAY. Gravel is subangular to subrounded fine to coarse of	=	(0.30)	'	` o
					chalk and mudstone.	- -	14.40 -8.9	7	
14.60 - 15.05	SPTS	N=39 (7,8/10,10,9,10)	14.50	10.00	Firm to stiff light brown sandy gravelly CLAY.	_			$-10H^{\circ}$
14.60 - 15.05	D 54	-			Gravel is subangular to subrounded fine to coarse of chalk, mudstone and flint. Occasional gravel	-			loHa
					size pockets of fine to medium sand.		_		_l −h`
45.00	D. 55					-	-		H
15.20	D 55	-				-	-		
15.50 - 15.95	UT 56	70 blows 33% rec	14.50	10.00		_	(2.00)		
						-			$Y \neq$
						=	_		$\mathcal{V} \mathcal{I}$
						_	-		
16.20 - 16.65	SPTS	N=37 (6,8/8,9,10,10)	15.50	7.00		-	-		$Y \neq$
16.20 - 16.65 16.40 - 17.00	D 57 B 58	-			Cliff are rish brown slightly conducting the group like	-	16.40 -10.9	97	///
					Stiff greyish brown slightly sandy slightly gravelly CLAY. Gravel is angular to subrounded fine to	_			
			12/04/18	1800	medium of chalk.	-			
47.00 47.45	LIT OO	55 blows 500/	16.50	7.00		-	-		//
17.00 - 17.45	UT 60	55 blows 56% rec	13/04/18	0800		_			$\perp / \prime \rangle$
			16.50	5.00		-			1/
17.45 - 17.60	D 61	-				17.45-18.05 light			//
17.60 - 18.05 17.60 - 18.05	SPTS D 62	N=35 (3,5/7,8,10,10)	16.50	5.00		grey silty fine to coarse sand			
17.00 - 10.03	D 02					-	-		
						_	(3.10)		//
						-	1		/
						- -			
18.50 - 18.95 18.50 - 19.00	UT NR B 63	60 blows No Recovery	18.40	9.00		-			//
10.00 10.00	B 60					-			
						-			
19.10 - 19.55	SPTS	N=35 (4,6/7,8,9,11)	18.40	9.00		-	1		$\mathcal{L}_{\mathcal{L}}$
19.10 - 19.55	D 64					-	1		
19.50	D 65				OVE L	_	19.50 -14.0)7	
	- 30				Stiff to very stiff brownish grey slightly sandy CLAY with occasional gravel. Gravel is subangular	-	1		1//
					fine to medium of chalk.	-			
	-		+						
oundwater Entries Depth Strike (n			Depth Sea	led (m)	Depth Related Remarks Depths (m) Remarks		Hard Boring Depths (m)	Duration (mins)	Toole uses
14.10		m after 20 minutes. Medium	Dehin Sea	ieu (III)	popula (III) Indiidika		Dehais (III)	Suration (MINS)	ioois use
es: For explanation	of symbols and a	obreviations Project		\/DI	IMMINGHAM		Borehole		
e Key to Exploratory luced levels in metre	Hole Records. All	depths and	•	VFI			201011016	DUG	
ckets in depth colum	nn. yright SOCOTEC	JK Limited AGS			15-18			BH2	
cale 1:50		2018 13:42:21 Carried	d out for	AEC	OM			Sheet 2 of 3	

Drilled GC Start quipment, Methods and Remarks Casing Depth Ground Level Depth from to (m) 14.50 22.20 (m) 1.20 14.50 (mm) 200 150 (m) 14.50 22.20 Dando 2000. Cable percussion boring. SPT Hammer ID: AR1940, Rod type: 54mm Whitworth. WH 11/04/2018 Coordinates (m) E 516588.10 .oaaed TC National Grid N 417353.62 Checked End Approved TC Strata Description Samples and Tests Depth, Level (Thickness) Backfill Legend Records Detail Casing Wate Stiff to very stiff brownish grey slightly sandy CLAY with occasional gravel. Gravel is subangular 20.00 - 20.45 50 (12,13 for 65mm/17,21,12 for 40mm) 20.00 11.00 (2.84)21.50 - 21.64 21.50 - 21.64 50 (25 for 50mm/42,8 for 10mm) 21.00 13/04/18 21.50 1800 11.00 16/04/18 21.50 16/04/18 0800 6.00 1000 50 (25 for 50mm/39,11 for 15mm) END OF EXPLORATORY HOLE Depth Related Remarks Hard Boring No. Depth Strike (m) Remarks Depth Sealed (m) Depths (m) Depths (m) Remarks Duration (mins) Tools used 180 60 Notes: For explanation of symbols and abbreviations see Key to Exploratory Hole Records. All depths and reduced levels in metres. Stratum thickness given in brackets in depth column. VPI IMMINGHAM Project Borehole BH₂ © Copyright SOCOTEC UK Limited

1:50

AGS Project No. A8015-18

Carried out for

AECOM

Depth from (m) 1.20 28.00 Diameter (mm) 200 146 Casing Depth (m) 28.00 28.00 Drilled SS/MB Start Equipment, Methods and Remarks Ground Level to (m) 28.00 28.60 Dando 175./Beretta T44. Cable percussion boring./Rotary core drilling (SWF size) using air mist flush. SPT Hammer ID: AR2068, Rod type: 54mm Whitworth. Logged MJS/PC Coordinates (m) 11/04/2018 E 516635.31 Checked TC National Grid N 417437.68 End Approved TC 16/04/2018

pproved TC Samples and	16/04/2018 Tests				Strata Description		1		
Depth	Type & No.	Records	Date Casing	Time Water	Main	Detail	Depth, Level (Thickness)	Legend	Backfil
		0.00-1.20 Hand excavate		vvater	Firm brown, locally mottled light grey, slightly	0.00-1.20			°] [
		inspection pit.			sandy slightly gravelly CLAY. Gravel is angular to	0.00-1.20 occasional rootlets 7.10-7.40 foreman reports reddish			اا
0.40 - 1.20	B 1	-			subrounded fine to coarse of quartz, sandstone, chalk and mudstone.				
]			
									-1 A 1
_]		1	rľ]ľ
1.20 - 1.65 1.20 - 1.65	SPTS D 2	N=16 (3,4/4,4,4,4)	1.20	Dry					
_]	(3.00)		ШЛ
1.65 - 2.00	В3	-					(***)		LYJI
]			
- 2.00 - 2.45	SPTS	N=13 (3,3/3,4,3,3)	1.50	Dry		_			
2.00 - 2.45	D 4	-				 			l ľ Jľ
2.50 - 3.00	B 5	-				1			ШЛ
									LYJY
- 3.00 - 3.45 3.00 - 3.45	SPTS D 6	N=8 (1,2/2,2,2,2)	1.50	1.10	Firm thinly laminated brown CLAY with frequent	1 -	3.00 +2.4	131	▝▕▕▕
0.00 0.40	50				partings of fine to medium sand.]			- C
							(0.70)	<u> </u>	-1/1
3.50 - 4.00	B 7	-				1			
					Medium dense brown slightly gravelly very silty	1	3.70 +1.	73	-VH
400 445	ODTO	N 40 (0.0/0.0 0.4)	4.00	D	fine to medium SAND. Gravel is angular to			\times_{\times}	-1/11
- 4.00 - 4.45 4.00 - 4.45	SPTS D 8	N=13 (2,2/3,3,3,4)	4.00	Dry	subrounded fine to medium of various lithologies.	-	(0.80)	× × ×	R I
								* * * 3 *] *	
4.50 5.00	D.O.]	4.50 +0.5	, (XXX)	ПИЦ
4.50 - 5.00	B 9	-			Stiff brown slightly sandy slightly gravelly CLAY.] [4.50 +0.9	93	i r i r
					Gravel is subangular to subrounded fine to coarse of chalk, mudstone, quartz and sandstone.]			
- 5.00 - 5.45	UT 10	39 blows 100% rec	4.50	Dry	or origin, muscione, quarte and carractorie.				ПЛ
5.00 - 5.45	01 10	39 DIOWS 100 /6 TeC	4.50	Diy					IPI
									$\square \square \square$
5.45 - 5.65	D 11	-				_			$\square \square$
5.65 - 6.00	B 12	-							Y
									ПΔЦ
- 6.00 - 6.45	SPTS	N=22 (3,3/4,6,6,6)	6.00	Dry		_			1141
6.00 - 6.45	D 13	-		-				3	P ///
									HЛL
6.50 - 7.10	B 14	-]			
									$\ V \ $
									$\mathbb{H}A\mathbb{I}$
-						7 10 7 40 foroman			 [///
						reports reddish		2	TVH
						brown sand = 7.40 becoming =			1141
7.50 - 7.95	UT 15	49 blows 100% rec	7.50	Dry		greyish brown			11/11
] =	1		V
7.95 - 8.15	D 16	_					1		$\prod M$
8.15 - 8.60	SPTS	N=23 /3 3/4 E 6 0\	7.50	Dry		=	1		
8.15 - 8.60 8.15 - 8.60	D 17	N=23 (3,3/4,5,6,8)	7.50	ыy					$\parallel \mid \mid$
						brown sand 7.40 becoming greyish brown -			$\prod M$
8.60 - 9.00	B 18	-					1		1 Y
						=		4	* /
- 9.00 - 9.45	UT 19	59 blows 100% rec	9.00	Dry]	(8.80)		$\ \ A\ $
2.30 0.40	3.10	11 11 10 100 100	1	Diy		=			#Y
							1		$\ A\ $
9.45 - 9.65	D 20	-] =	1		$\ \ \ \ $
9.65 - 10.10	SPTS	N=29 (3,5/7,7,8,7)	9.50	Dry					$\ $
9.65 - 10.10	D 21	-				=	1		$\ A\ $
							-		
roundwater Entries					Depth Related Remarks		Hard Boring		
lo. Depth Strike (n		after 20 minutes	Depth Sea		Depths (m) Remarks		Depths (m)	Duration (mins)	Tools use
1 3.00 2 7.10		after 20 minutes. after 20 minutes.	3.6 7.4	0					
too. For overleady	of ourseled	hyaviations Ir :	-4	\ <i>t</i> e-	IMMINGUAM		Baraha':		
tes: For explanation of e Key to Exploratory	Hole Records. All	depths and	CI	VPI	IMMINGHAM		Borehole		
duced levels in metre ackets in depth colum	 Stratum thickne 	ss given in	ct No.	A80	15-18			BH3	
© Copy	right SOCOTEC U	JK Limited AGS	ed out for	AEC					
cale 1:50	14/08/2	2018 13:42:22	.a out 101	AEC	- III		I	Sheet 1 of 3	

Depth from (m) 1.20 28.00 Diameter (mm) 200 146 Casing Depth (m) 28.00 28.00 Drilled SS/MB Start Equipment, Methods and Remarks Ground Level 5.43 mOD to (m) 28.00 28.60 Dando 175./Beretta T44. Cable percussion boring./Rotary core drilling (SWF size) using air mist flush. SPT Hammer ID: AR2068, Rod type: 54mm Whitworth. Logged MJS/PC Coordinates (m) E 516635.31 11/04/2018 Checked TC National Grid N 417437.68 End

pproved TC	16/04/2018						4			
Samples and	Tests		Date	Time	Strata Description		Depth, Leve	Locand	D!	rfi!!
Depth	Type & No.	Records	Casing	Water	Main	Detail	Depth, Leve (Thickness)	Legend	Back	viii)
10.00 - 10.50	B 22				Stiff brown slightly sandy slightly gravelly CLAY. Gravel is subangular to subrounded fine to coarse of chalk, mudstone, quartz and sandstone.					
- 10.50 - 10.95	UT 23	76 blows 100% rec	10.50	Dry						
10.95 - 11.15	D 24	-							ľ	$I_{/}$
11.00 - 12.00 11.15 - 11.60 11.15 - 11.60	B 26 SPTS D 25	N=36 (4,6/7,9,11,9)	11.00	Dry					IIД	Γ
-	D 23								II/J	
									II/J	
12.00 - 12.45	UT 27	69 blows 100% rec	12.00	Dry					II/J	
12.45 - 12.65 12.65 - 13.10	D 28 SPTS	N=30 (3,5/5,7,9,9)	12.00	Dry		=				
12.65 - 13.10 12.80 - 13.30	D 29 B 30	-	12.00	5.,						
_						_				
- - 13.50 - 13.95	SPTS	N=11 (1 2/2 2 2 2)	12.00	7.90	Medium dense greenish brown gravelly clayey fine to medium SAND. Gravel is angular to		13.30 -7.	87 3	*	
13.50 - 13.95 13.50 13.50 - 13.95	D 31 D 32	N=11 (1,2/2,3,3,3)	12.00	1.80	subrounded fine to coarse of various lithologies. Occasional gravel size pockets of clay.		(0.80)		$\ \mathbf{J} \ $	
-					- ,,	_			$\ A\ $	
14.10 - 15.00	B 33				Stiff greyish brown slightly sandy slightly gravelly CLAY. Gravel is angular to subrounded fine to		14.10 -8.	67		
<u>-</u>					coarse of chalk, quartz, sandstone and mudstone.		(1.00)		\mathbb{I}	
			11/04/18	1700			(1.50)		14	
- 15.00 - 15.45 15.00 - 15.45	SPTS D 34	N=11 (2,3/2,2,3,4)	15.00	7.00	Medium dense yellowish brown gravelly fine to		15.10 -9.	67	11/1	
			15.00	3.30	medium SAND. Gravel is angular to subrounded fine to coarse of various lithologies. Occasional				114	
<u> </u>					gravel size pockets of clay.		(0.90)		M	
40.00 40.50	D 05					=	40.00		14	
— 16.00 - 16.50	B 35				Grey slightly sandy clayey SILT. Rare subangular fine to medium gravel of chalk.	_	16.00 -10	2/ X X X X	M	
- 16.50 - 16.77	SPTS	57 (10,15 for 60mm/28,29	16.50	5.10					M	Y.
16.50 - 16.80	D 36	for 60mm)						<u> </u>	K	K
17.00 - 18.00	B 37	-				_		(K	Ľ
							(2.70)	××××	K	Ľ,
=								$\times \times \times \times$		Ľ,
								× × × × × × × × × × × × × × × × ×	IИ	L
- 18.00 - 18.20 18.00 - 18.30	SPTS D 38	50 (15,10 for 50mm/50 for 70mm)	18.00	Dry		_			K	L
_								<u> </u>	$\ \cdot \ $	$I_{/}$
18.60 - 19.50	B 39	-			Very stiff light grey slightly sandy slightly gravelly		18.70 -13	27	$\ \ \ $	
_					CLAY. Gravel is subangular to subrounded fine to coarse of chalk with rare flint. Locally silty.	_			$\ \mathbf{J} \ $	
									$\ \cdot \ $	
- 19.50 - 19.75 19.50 - 19.80	SPTS D 40	50 (11,14 for 50mm/22,28 for 50mm)	19.50	Dry					$\ \ \ $	
19.50 - 19.60	D 40	- Sommy								
					I				<u>Ir L</u>	
Groundwater Entries					Depth Related Remarks		Hard Boring			
No. Depth Strike (after 20 minutes.	Depth Seale 14.10		Depths (m) Remarks		Depths (m)	Duration (mins)	Tools ι	used
lotes: For explanation	of symbols and abl	breviations Project		\/D1	IMMINGHAM		Borehole			
ee Key to Exploratory educed levels in metre	Hole Records. All c es. Stratum thicknes	depths and ss given in					Potetiole	ВН3		
ackets in depth colun	nn. yright SOCOTEC U	IK Limited AGS		A80 AE0	15-18 COM			Sheet 2 of 3		
7001G 1.0U	14/08/2	018 13:42:22			-			OHEEL & ULD		

Depth from (m) 1.20 28.00 Diameter (mm) 200 146 Casing Depth (m) 28.00 28.00 Drilled SS/MB Start Equipment, Methods and Remarks Ground Level to (m) 28.00 28.60 Dando 175./Beretta T44. Cable percussion boring./Rotary core drilling (SWF size) using air mist flush. SPT Hammer ID: AR2068, Rod type: 54mm Whitworth. Logged MJS/PC Coordinates (m) E 516635.31 11/04/2018 Checked TC National Grid N 417437.68 End Approved TC 16/04/2018

	16/04/2018				<u> </u>				
Samples and			Date	Time	Strata Description		Depth, Level	Legend	Backfill
Depth 20.00 - 21.00	Type & No.	Records	Casing	Water		Detail	(Thickness)		
21.00 - 21.20 21.00 - 21.30	SPTS D42	50 (19,6 for 10mm/31,19 for 40mm)	21.00	Dry	Very stiff light grey slightly sandy slightly gravelly CLAY. Gravel is subangular to subrounded fine to coarse of chalk with rare flint. Locally sitty.	24.00 becoming- locally gravelly			
22.00 - 22.50	B 43								
- 22.50 - 22.62 22.50 - 22.70	SPTS D 44	50 (25 for 75mm/50 for 40mm)	22.50	Dry			(8.10)		
23.00 - 24.00 	B 45 SPTS D 46		12/04/18 24.00 13/04/18 24.00	1700 Dry 0800 19.30		24.00 becoming- locally gravelly			
- 25.00 - 25.50	B 47								
25.50 - 25.62 25.50 - 25.62 - 26.00 - 26.50	SPTS D 48 B 49	50 (25 for 75mm/50 for 50mm)	25.50	Dry					
26.80 - 27.02 26.80 - 27.02 - 27.00 - 27.50	SPTS D 50 B 51	50 (18,7 for 10mm/28,22 for 60mm)	26.50	8.70	Extremely weak white CHALK. Recovered as gravelly clay. Gravel is angular to subangular fine to coarse of chalk with rare flint.	27.00 becoming recovered as clayey		7 4 3	
- 28.00 - 28.10 28.00 - 28.60	42 - 0 NI 0 -	50 (25 for 60mm/50 for 40mm) Flush: 28.00 - 28.60 Air/ mist 100%	13/04/18 28.00 16/04/18 28.00 16/04/18 28.00	1630 4.10 1300 0.70 1700 0.70	Medium strong white CHALK. Recovered as subangular to subrounded fine to coarse gravel.		28.00 -22.5		
-					END OF EXPLORATORY HOLE	coarse gravel	28.60 -23.1		
_	TCR		Date	Time					
Froundwater Entries No. Depth Strike (m 4 26.80	scr if RQD If	Records after 20 minutes.	Casing Depth Seal	Water	Depth Related Remarks Depths (m) Remarks		Hard Boring Depths (m) 27.60 - 28.00	Duration (mins) 60	Tools used Chisel
otes: For explanation of the Key to Exploratory F Educed levels in metres reackets in depth columi © Copyl Scale 1:50	Hole Records. All on the Records of	depths and ss given in Project	No.	A80	IMMINGHAM 15-18 COM		Borehole	BH3 Sheet 3 of 3	

Depth from (m) 1.20 24.00 Diameter (mm) 200 146 Casing Depth (m) 16.50 28.60 Drilled SS/MB Start quipment, Methods and Remarks Ground Level to (m) 24.00 34.60 Dando 175/Beretta T44.

Cable percussion boring/Rotary open hole drilling to 28.50m followed by rotary core drilling (SWF size) using air mist flush.

SPT Hammer ID: AR2068, Rod type: 54mm Whitworth. Logged WH/PC Coordinates (m) 16/04/2018 E 516726.70 Checked TC National Grid N 417410.38 End 20/04/2018 Approved TC

Sa	mples and	d Tests				Strata Description				
	Depth	Type & No.	Records	Date Casing	Time Water	Main	Detail	Depth, Level (Thickness)	Legend	Backfill
	0.50 - 1.20	B 1	0.00-1.20 Hand excavate inspection pit.	ed		Light brown, mottled grey, slightly sandy slightly gravelly CLAY. Gravel is subrounded fine to medium of chalk and sandstone with frequent rootlets.	=======================================	(0.30) 0.30 +3.4	39	0 .
						(TOPSOIL) Firm brown, mottled grey and light brown, slightly sandy slightly gravelly CLAY. Gravel is subangular to subrounded fine to coarse of chalk, flint and sandstone.			1	
	1.20 - 1.65 1.20 - 1.65	SPTS D 2	N=16 (2,3/4,4,4,4)	1.20	Dry		=			
	1.65 - 2.00	B 3	-		_			(2.90)		
	2.00 - 2.45	UT 4	59 blows 100% rec	1.50	Dry		=		2	
	2.45 - 2.65	D 5	-				-			
Ē	2.65 - 3.10 2.65 - 3.10	SPTS D 6	N=15 (2,3/3,4,3,5)	1.50	Dry					
Ē	3.10 - 3.55	UT 7	51 blows 100% rec	3.00	Dry	Soft brown very sandy CLAY.		3.20 +0.9	99 1	
Ē										
Ē	3.75 - 4.20 3.75 - 4.20	SPTS D 8	N=6 (1,2/1,2,1,2)	3.00	1.00		sand =	(0.95)		EZIY
	4.00 - 4.50	В 9	-						4	<u> </u>
						Stiff dark brown slightly sandy slightly gravelly CLAY. Gravel is subangular to rounded fine to		4.15 +0.0)4	11/1/
	4.50 - 4.95	UT 10	47 blows 100% rec	4.50	Dry	coarse of chalk and sandstone.	3.55 brown clayey sand			
	4.95 - 5.15	D 11	-				_			
	5.15 - 5.60 5.15 - 5.60	SPTS D 12	N=22 (2,3/4,6,6,6)	4.50	Dry					MAL.
	5.50 - 6.00	B 13								
	0.00	3.0						(2.95)		#YJY
	6.00 - 6.45	UT 14	42 blows 100% rec	6.00	Dry		=			
=	6.45 - 6.65	D 15	-				=			II/AL
	6.65 - 7.10 6.65 - 7.10	SPTS D 16	N=24 (2,3/4,6,6,8)	6.00	Dry					
				16/04/18 6.00	1700 2.10		7.10-7.20 fine sand		3	* /
	7.20 - 7.50	B 17	-	17/04/18 6.00	0800 2.00	Stiff to very stiff dark brown slightly sandy slightly gravelly CLAY. Gravel is subangular to	and gravel			
	7.50 - 7.95	UT 18	51 blows 100% rec	7.50	Dry	subrounded fine to medium of chalk and sandstone.			2	
	7.95 - 8.15	D 19	-							
=	8.15 - 8.60 8.15 - 8.60	SPTS D 20	N=25 (4,4/5,6,7,7)	7.50	Dry					
Ē	8.50 - 9.00	B 21								
	6.50 - 9.00	BZI								
	0.00 0.45	UT 22	42 blows 100% rec	0.00	Dev					
	9.00 - 9.45	UT 22	42 blows 100% rec	9.00	Dry		=			
	9.65 - 10.10	SPTS	N=23 (3,4/5,5,7,6)	9.00	Damp		<u> </u>	(4.90)	6	
	9.65 - 10.10	D 23	- (-,,-,1,10)							
Gro	oundwater Entrie	s				Depth Related Remarks		Hard Boring		
No 1 2	Depth Strike 3.20	(m) Remarks Rose to 1.00 n	n after 20 minutes. n after 20 minutes.	Depth Sea 4.15 7.20	5	Depths (m) Remarks		Depths (m)	Duration (mins)	Tools used
Note	es: For explanation	n of symbols and al	obreviations Proje	ect	VPI	IMMINGHAM		Borehole		
see redu	Key to Explorator uced levels in metr	y Hole Records. All es. Stratum thickne	depths and ess given in						BH4	
	ckets in depth colu © Cop cale 1:50	pyright SOCOTEC	UK Limited AGS Carri	ect No. ed out for	AEC	15-18 COM			Sheet 1 of 4	
Š		14/08/	2018 13:42:23	-					51100t 1 01 1	

Depth from (m) 1.20 24.00 Diameter (mm) 200 146 Casing Depth (m) 16.50 28.60 Drilled Equipment, Methods and Remarks SS/MB Start Ground Level to (m) 24.00 34.60 Dando 175./Beretta T44.
Cable percussion boring./Rotary open hole drilling to 28.50m followed by rotary core drilling (SWF size) using air mist flush.
SPT Hammer ID: AR2068, Rod type: 54mm Whitworth. Logged WH/PC Coordinates (m) 16/04/2018 E 516726.70 Checked TC National Grid N 417410.38 End Approved TC 20/04/2018

Approved TC Samples and	20/04/2018				Strata Description		1			
Depth	Type & No.	Records	Date	Time	Main	Detail	Depth, Level	Legend	Baci	kfill
10.00 - 10.50	B 24	-	Casing	Water	Stiff to very stiff dark brown slightly sandy slightly	_	(Thickness)		III a	Τ,
					gravelly CLAY. Gravel is subangular to subrounded fine to medium of chalk and					Y
10.50 - 10.95	UT 25	40 blows 100% rec	10.50	Dry	sandstone.]			11/1	
				•					$\ A$	1/
10.95 - 11.15	D 26								∭ľ J	1,
11.15 - 11.60	SPTS	N=24 (3,4/5,6,6,7)	10.50	Dry		-				Y.
11.15 - 11.60	D 27	1 21 (0, 1/0,0,0,0,7)	10.00	٥.,						V
11.50 - 12.00	B 28	-				-			\mathbb{H}	
									∭/ A	1/
— 12.00 - 12.45	SPTS	N=33 (4,4/6,7,9,11)	10.50	7.20		12.00-12.30 driller		31 3		Ι,
12.00 - 12.45	D 29	14-33 (4,4/0,7,9,11)	10.50	7.20	Brown slightly sandy slightly gravelly CLAY. Gravel is subrounded fine to coarse of chalk,		12.00			Y
					sandstone and flint.	illie saliu			111/1	\vee
12.50 - 13.00	B 30	-				12.50 becomes light – brown sandy			$\ \ _{\mathcal{A}}$	1/
						brown sundy	(1.40)		III J	Ľ
_										Y
									$\ A\ $	V
					Chiff to your obiff light		13.40 -9.2	21 4		\downarrow
13.50 - 13.95 13.50 - 13.95	SPTS D 31	N=37 (5,5/7,10,9,11)	13.50	2.10	Stiff to very stiff light yellowish brown slightly sandy slightly gravelly CLAY. Gravel is subangular	12.50 becomes light brown sandy 14.00-15.00 15.50-16.00 sandy clayey gravel				
					to subrounded fine to coarse of chalk, mudstone, sandstone and flint.					Y
- 14.00 - 15.00	B 32	-			Sanastone and mit.	14.00-15.00			11/1	V
						becoming slightly gravelly clayey sand			$\ \lambda \ $	V
									11/1	
						1			W.	ľ.
										V
- 15.00 - 15.45	SPTS	N=16 (3,3/4,3,4,5)	15.00	1.10		_			11/1	
15.00 - 15.45	D 33	-					(3.70)	5	∜ /	
							(3.70)			Y
15.50 - 16.00	B 34	-				15.50-16.00 sandy – clayey gravel				V
=						_			$\ \ _{\lambda}$	
									\mathbb{F}	Ľ.
										V
16.50 - 16.95	SPTS	N=44 (6,8/7,11,13,13)	16.50	1.30		1				
			17/04/18 16.50	1700 1.30						1,
. 47.40 47.50	D 00		18/04/18	0800		-	17.40		II J	T.
17.10 - 17.50	B 36		16.50	1.30			-	91	\mathbb{Z}	Y
					Graver is subrounded fine to medium of chalk and sandstone.		(0.70)			
									$\ \ _{A}$	1/
					Very stiff greyish brown slightly sandy slightly	1	17.80 -13.	61 5	╣	T,
18.00 - 18.45 18.00 - 18.45	SPTS D 37	N=13 (2,3/2,3,3,5)			gravelly CLAY. Gravel is subrounded fine to medium of chalk and sandstone.	=			$\ Y \ $	Y
18.00 - 19.00	B 38	-								V
							(1.30)		$\ \ \ $	
									- ′-	1
									$\ Y \ $	r
					V	=	19.10 -14.	91	11/1	V
					Very stiff greyish brown slightly sandy slightly gravelly CLAY with pockets of coarse gravel size				$\ \ \ $	
19.50 - 19.74	SPTS	-			extremely weak weathered chalk. Gravel is subrounded fine to coarse of chalk.				$\parallel \parallel \parallel$	
19.50 - 19.70	D 39				on the control of order.				$\ \cdot\ $	Υ.
										Y
								[1 to the section of		
roundwater Entries					Depth Related Remarks		Hard Boring			
lo. Depth Strike (r	m) Remarks		Depth Seale		Depths (m) Remarks		Depths (m)	Duration (mins)	Tools	used
3 12.00 4 13.40	Rose to 4.10 m	after 20 minutes. after 20 minutes.	12.30)	13.50 - 16.50 Water added to assist boring.					
5 17.80		m after 20 minutes.								
tes: For explanation	of symbols and abl	breviations Projec	:t	VPI	IMMINGHAM		Borehole			
e Key to Exploratory luced levels in metre	s. Stratum thicknes	ss given in	et No	A 0.0	15-18			BH4		
ckets in depth colum © Copy	yright SOCOTEC U		t No. d out for	AEC						
Scale 1:50	14/08/2	018 13:42:23	u Out IOF	AEC	· · · · · · · · · · · · · · · · · · ·			Sheet 2 of 4		

Depth from (m) 1.20 24.00 Diameter (mm) 200 146 Casing Depth (m) 16.50 28.60 Drilled SS/MB Start Equipment, Methods and Remarks Ground Level to (m) 24.00 34.60 Dando 175/Beretta T44.
Cable percussion boring./Rotary open hole drilling to 28.50m followed by rotary core drilling (SWF size) using air mist flush.
SPT Hammer ID: AR2068, Rod type: 54mm Whitworth. Coordinates (m) WH/PC Logged 16/04/2018 E 516726.70 Checked TC National Grid N 417410.38 End Approved TC 20/04/2018

mnlae and	Toete				Strata Description		1		
Imples and	Type & No.	Records	Date	Time	Main	Detail	Depth, Leve	Legend	Backf
20.00 - 21.00	B 40	Records	Casing	Water	Main Very stiff greyish brown slightly sandy slightly	_	(Thickness)		I
20.00 - 21.00	B 40				very still greylish brown slightly sandy slightly gravelly CLAY with pockets of coarse gravel size extremely weak weathered chalk. Gravel is subrounded fine to coarse of chalk.		(2.30)		
21.00 - 21.22 21.00 - 21.25	SPTS D 41				Very stiff dark greyish brown slightly sandy slightly gravelly CLAY. Gravel is subrounded fine to medium of chalk.	21.00-21.25 white chalk, possible cobble	21.40 -17	21	
22.00 - 22.50	B 42	-			medium of chair.				
22.50 - 22.64 22.50 - 22.60	SPTS D 43	50 (18,7 for 10mm/50 for 60mm)				= = = = = = = = = = = = = = = = = = =	(2.00)		
23.00 - 24.00	B 44					=	23.40 -19	21	
	0070	70/07/70 (00)	18/04/18 16.50	1700	Very stiff light grey slightly sandy slightly gravelly CLAY. Gravel is subrounded fine to medium of chalk and flint.	= = = = = = = = = = = = = = = = = = =	(0.60)		
24.00 - 24.15 24.00 - 24.15	SPTS D 45	50 (25/50 for 60mm)	19/04/18 19/59/18 16.50	0800 08 96 0.85	Stiff grey clay. (Rotary open hole drilling) (Drillers description)	24.00-24.15 light	24.00 -19	81 6	
						= = = = = = = = = = = = = = = = = = =			
						= = = = = = = = = = = = = = = = = = =			
							(4.50)		
						= = = = = = = = = = = = = = = = = = =	(****)		
						=======================================			
					Medium strong to strong white CHALK.	28.60-28.72	28.50 -24	.31	
28.50 - 30.00	90 NI 6 NI				Fractures are: 1) subhorizontal, very closely spaced, undulating, rough with occasional grey staining. 2) subvertical, undulating, rough with occasional grey staining.	recovered as subangular gravel with rare angular flint 28.86-28.96 grey flint nodule			0
	0 80					29.30-30.00 recovered as gravel = 29.44-29.47 soft = cream mottled = greyish green clay = with frequent =			000
Depth	TCR SCR If	Records	Date Casing	Time Water		angular fine gravel = of chalk 30.00-30.27 AZCL			_ <u> </u>
ndwater Entries Depth Strike (n 24.00		m after 20 minutes.	Depth Seal		Depth Related Remarks Depths (m) Remarks		Hard Boring Depths (m) 21.40 - 21.90 23.40 - 24.00	Duration (mins) 40 60	Tools ι
: For explanation of ey to Exploratory I				VPI	IMMINGHAM		Borehole		

Sheet 4 of 4

Drilled quipment, Methods and Remarks Depth from Casing Depth Ground Level (m) 24.00 34.60 (m) 1.20 24.00 (mm) 200 146 (m) 16.50 28.60 Dando 175. Beretta T44. Cable percussion boring. Rotary open hole drilling to 28.50m followed by rotary core drilling (SWF size) using air mist flush. SPT Hammer ID: AR2068, Rod type: 54mm Whitworth. WH/PC Coordinates (m) .oaaed 16/04/2018 E 516726.70 TC lational Grid N 417410.38 Checked End Approved TO Samples and Tests Strata Description Depth, Level (Thickness) Backfill Legend Records/Samples Detail Casing Wate 30.27-30.37 0 1) subhorizontal, very closely spaced, undulating, rough with occasional grey staining.
2) subvertical, undulating, rough with occasional recovered as subangular coarse Ö gravel 30.51-30.57 recovered as subangular coarse 30.65 grey staining. Strong white CHALK 30.00 - 31.50 Fractures are subhorizontal, very closely spaced, Ö undulating, rough with brownish grey staining and rare infill of very soft greyish brown CLAY. O 0 31.50-31.81 AZCL Flush: 28.50 - 34.60 Air/ mist 100% 20/04/18 28.60 0 31.50 - 32.10 Ō О 32.42-32.46 = recovered as = gravel = 32.64-32.75 = recovered as = gravel = 32.64-32.75 = recovered as = gravelar medium 0 recovered as subangular coarse gravel 32.64-32.75 32.10 - 33.10 (3.95)O recovered as subangular medium Ō to coarse gravel to coarse gravel including flint 32.77-33.00 subvertical undulating smooth fracture with clay infill Ö 0 33.10 - 34.10 Ō 33.00-33.02 recovered as grey angular to subangular gravel of 0 34.10 - 34.60 flint 33.40-33.42 rare O 20/04/18 1700 subangular coarse gravel of flint -30 41 END OF EXPLORATORY HOLE gravel of flint 33.80-33.82 Groundwater Entries Depth Related Remarks Chiselling Details Depth Sealed Depth Strike Remarks Duration (mins) Tools used Depths (m) Remarks Depths (m) Notes: For explanation of symbols and abbreviations see Key to Exploratory Hole Records. All depths and reduced levels in metres. Stratum thickness given in brackets in depth column. VPI IMMINGHAM Project Borehole BH4 © Copyright SOCOTEC UK Limited 1:50 Project No. A8015-18

Carried out for

AECOM

Drilled GC Start quipment, Methods and Remarks Depth from Casing Depth Ground Level (m) 1.20 13.00 (m) 13.00 26.10 (mm) 200 150 (m) 13.00 26.00 Dando 2000. Cable percussion boring. SPT Hammer ID: AR1940, Rod type: 54mm Whitworth. WH .oaaed 17/04/2018 Coordinates (m) E 516748.31 TC National Grid N 417439.50 Checked End Approved TC Samples and Tests Strata Description Depth, Level Backfill Legend Depth Type & No. Records Detail Casing Wate Dark brown slightly sandy slightly gravelly CLAY 0.10 0.10 - 0.40 Gravel is subangular to subrounded fine to (0.40)medium of chalk and sandstone. 0.40 (TOPSOIL) 0.50 irm dark brown slightly sandy slightly gravelly 0.50 - 0.80 (0.50)CLAY. Gravel is angular to subangular fine to 0.90 +3.75 Firm brown, mottled light grey, slightly sandy 1.00 1.00 - 1.20 1.20 - 1.65 D 5 B 6 UT 7 slightly gravelly CLAY. Gravel is subrounded fine to coarse of chalk, flint and mudstone. 35 blows 89% rec 1.65 - 1.80 D 8 1.80 - 2.25 SPTS N=16 (2,3/3,4,4,5) D 9 B 10 1.80 - 2.25 1.80 - 2.25 38 blows 100% rec 1.70 Dry (3.60) 2.75 - 2.90 D 12 SPTS D 13 B 14 N=19 (3,4/4,5,5,5) 1.70 2.90-4.45 gravel is Dry 2.90 - 3.35 subrounded UT 15 3.40 - 3.85 32 blows 100% rec 3.00 Dry 3.85 - 3.90D 16 SPTS D 17 B 18 3.00 4.00 - 4.45 4.00 - 4.45 N=17 (2,3/4,4,4,5) Dry 4.00 - 4.45 4.50 - 4.95 4.50 40 blows 100% rec 4.40 Dry 4.50 +0.15 Firm to stiff dark brown slightly sandy slightly gravelly CLAY. Gravel is subrounded fine of chalk, sandstone and mudstone. 4.95 - 5.10 D 21 5.10 - 5.55 5.10 - 5.55 5.10 - 5.55 SPTS N=13 (2,2/3,3,3,4) 4.40 Dr 6.50 - 6.95 UT 23 46 blows 100% rec 4.60 6.95 - 7.10 D 24 7.10 - 7.55 7.10 - 7.55 7.10 - 7.55 SPTS N=15 (2,3/3,4,4,4) Dry 8.00 - 8.45 UT 27 60 blows 100% rec 4.60 Dry 8.45 - 8.60 D 28 (7.90)8.60 - 9.05 8.60 - 9.05 8.60 - 9.05 SPTS N=29 (3,5/6,7,8,8) 4.60 Dry D 29 B 30 9.50 - 9.95 UT 31 50 blows 100% rec 4.60 Dry 9.95 - 10.10 D 32 **Groundwater Entries** Depth Related Remarks Depth Sealed (m) No. Depth Strike (m) Remarks Duration (mins) Tools used Depths (m) Remarks Depths (m) VPI IMMINGHAM Notes: For explanation of symbols and abbreviations Project Borehole see Key to Exploratory Hole Records. All depths and reduced levels in metres. Stratum thickness given in brackets in depth column. BH5 © Copyright SOCOTEC UK Limited AGS Project No. A8015-18

Carried out for

AECOM

Drilled GC Start quipment, Methods and Remarks Depth from Casing Depth Ground Level (m) 1.20 13.00 (m) 13.00 26.10 (mm) 200 150 (m) 13.00 26.00 Dando 2000. Cable percussion boring. SPT Hammer ID: AR1940, Rod type: 54mm Whitworth. WH .oaaed 17/04/2018 Coordinates (m) E 516748.31 TC National Grid N 417439.50 Checked End Approved TC Samples and Tests Strata Description Backfill Depth, Level Legend Type & No. Records Detail Casing Wate Firm to stiff dark brown slightly sandy slightly gravelly CLAY. Gravel is subrounded fine of chalk, 11.00 - 11.45 60 blows 100% rec 4.60 D 36 11.45-12.05 dark brown, gravel is fine to medium 11.60 - 12.05 11.60 - 12.05 11.60 - 12.05 SPTS D 37 B 38 N=31 (4,6/7,7,8,9) 4.60 12.40 12.50 - 12.95 12.50 - 12.95 12.50 - 12.95 W 41 SPTS D 39 B 40 Stiff light brown slightly sandy gravelly CLAY. N=32 (4,6/7,7,8,10) 4.60 Gravel is subrounded fine to medium of chalk, sandstone and mudstone. 17/04/18 4.60 13.00 18/04/18 0800 (2.10)UT 43 70 blows 100% rec 13.50 14.00 - 14.45 14.45 - 14.60 D 44 14.50 -9.85 Stiff to very stiff brown slightly sandy slightly 14.60 - 15.05 14.60 - 15.05 14.60 - 15.05 SPTS N=46 (7.8/9.10.13.14) 13.50 D 45 B 46 gravelly CLAY. Gravel is subrounded fine to coarse of chalk and mudstone. 15.50 - 15.95 UT 47 100 blows 100% rec 15.00 15.95 - 16.10 D 48 (3.10) 16.10 - 16.48 16.10 - 16.48 16.10 - 16.48 SPTS D 49 B 50 50 (8,10/13,18,19 for 75mm) 15.00 Dry 16.10 becoming 2 平 50 (10,12/14,17,19 for 65mm) 15.00 Dry 17.60 0 Very stiff light grey slightly sandy slightly gravelly CLAY with coarse gravel size pockets of 17.70 17.70 - 18.50 D 53 B 54 0 extremely weak chalk. Gravel is subrounded fine O to medium of chalk. (0.90)18.50 - 18.86 18.50 - 18.86 18.50 - 18.86 SPTS 50 (11.13/15.18.17 for 18.00 18.00 18.50 -13.85 Very stiff light grey slightly sandy slightly gravelly CLAY. Gravel is subrounded fine to coarse of D 55 Groundwater Entries Depth Related Remarks Hard Boring Depth Strike (m) Remarks No. Depth Sealed (m) Depths (m) Remarks Depths (m) Duration (mins) Tools used Rose to 12.10 m after 20 minutes. Slow inflow Rose to 16.70 m after 20 minutes. Medium VPI IMMINGHAM Notes: For explanation of symbols and abbreviations Project Borehole

see Key to Exploratory Hole Records. All depths and reduced levels in metres. Stratum thickness given in brackets in depth column. © Copyright SOCOTEC UK Limited
1:50

Project No. A8015-18

AECOM

Carried out for

BH₅

Depth from (m) 1.20 13.00 Diameter (mm) 200 150 Casing Depth (m) 13.00 26.00 Drilled GC Start Equipment, Methods and Remarks Ground Level 4.65 mOD to (m) 13.00 26.10 Dando 2000. Cable percussion boring. SPT Hammer ID: AR1940, Rod type: 54mm Whitworth. Logged WH Coordinates (m) E 516748.31 17/04/2018 Checked TC National Grid N 417439.50 End

Approved TC	19/04/2018]		
Samples and	Tests		Date Tim	Strata Description	·				
Depth	Type & No.	Records	Casing Wate	Mail Mail	in	Detail	Depth, Level (Thickness)	Legend	Backfill
20.00 - 20.28 20.00 - 20.28 20.00 - 20.28	SPTS D 57 B 58	50 (12,13 for 55mm/20,30 for 75mm)	19.50 19.5	Very stiff light grey slightly CLAY. Gravel is subround chalk.		- - - - - - - - - - - - - - - - - - -			
	SPTS D 59 B 60	50 (20,5 for 15mm/26,24 for 70mm)	21.00 21.0			- - - - - - - - - - - - - - - - - - -	(7.65)		
23.00 - 23.21 - 23.00 - 23.21 - 23.00 - 23.21 - 23.00 - 23.21	SPTS D 61 B 62	50 (18,2 for 20mm/30,20 for 40mm)	22.50 22.0	D.		23.00-23.30 including gravel of sandstone sandstone			
- 24.50 - 24.62 - 24.50 - 24.62 - 24.50 - 24.62 - 24.50 - 24.62	SPTS D 63 B 64	45 (25 for 20mm/33,12 for 25mm)	23.50 24.0 18/04/18 180			- - - - - - - - -			
- 25.60 - 25.72 - 25.60 - 25.72 - 26.10 - 26.15	SPTS D 65 SPTC	50 (25 for 50mm/50 for 70mm) 50 (25 for 20mm/50 for	25.00 24.0 19/04/18 080 25.00 21.0 19/04/18 153 26.00 23.0			= - -	0.45		
Groundwater Entries		30mm)		END OF EXPLOI	RATORY HOLE		Hard Boring		Tools
No. Depth Strike (r	of symbols and abb Hole Records. All d	epths and	Depth Sealed (m)	Depths (m) Remarks			Depths (m) 25.40 - 25.60 25.70 - 26.10 Borehole	Duration (mins) 60 180	Tools used Chisel Chisel
reduced levels in metre brackets in depth colum	s. Stratum thicknes nn. yright SOCOTEC U	s given in		015-18 COM				BH5 Sheet 3 of 3	

Depth from (m) 1.20 24.60 Diameter (mm) 200 146 Casing Depth (m) 24.60 24.60 Drilled SS/MB Start Equipment, Methods and Remarks Ground Level to (m) 24.60 34.50 Dando 175./Beretta T44. Cable percussion boring./Rotary core drilling (SWF size) using air mist flush. SPT Hammer ID AR2068, Rod type: 54mm Whitworth. Logged MJS/IH Coordinates (m) E 516781.85 05/04/2018 Checked TC National Grid N 417525.42 End

Approved TC	16/04/2018								
Samples an	d Tests		Dete	Time.	Strata Description		<u> </u>		
Depth	Type & No.	Records	Date Casing	Time Water	Main	Detail	Depth, Level (Thickness)	Legend I	Backfill
0.00 - 0.30	B 1	0.00-1.20 Hand excavate inspection pit.	ed		Greyish brown very sandy clayey GRAVEL. Gravel is angular to subrounded fine to coarse of		(0.30)		°.4 0
0.30 - 0.55	B 2				mudstone, sandstone, chalk and brick.		0.30 +4.4	11	۵ ا
0.55 - 1.20	В3	-			\((MADE GROUND)\) Firm brown, locally greyish brown, slightly sandy	-	(0.30) 0.60 +4.1	1	
					slightly gravelly CLAY. Gravel is subangular to subrounded fine to coarse of chalk, mudstone and				47
_					sandstone. Stiff to very stiff brown slightly sandy slightly	_			47
1.20 - 1.65	SPTS	N=14 (1,2/2,4,4,4)	1.20	Dry	gravelly CLAY. Gravel is subangular to rounded fine to coarse of predominantly chalk, mudstone,		-		41/
1.20 - 1.65	D 4				quartz and sandstone and rare coal.				X[2
1.65 - 2.00	B 5						1		7Ľ
									44.
2.00 - 2.45	UT 6	71 blows 100% rec	1.50				1		47
							1		47
2.45 - 2.65	D 7	-					(4.05)	1 🗷	<i>1</i> 12
							(4.05)		
3.00 - 3.45	SPTS	N=16 (3,4/3,4,4,5)	3.00	Dry					\prod
3.00 - 3.45	D 8	-					1	2 🔻	4V
3.50 - 4.00	В 9						1		47
	69					-	1		41/
							1		<i>/</i> 1/
4.00 - 4.45	UT 10	60 blows 100% rec	4.00						11/2
							1		T
4.45 - 4.65	D 11	-	05/04/18 4.00	1700 2.50					4V
			06/04/18	0800	Firm thinly laminated CLAY with occasional partings of fine sand. Frequent gravel size		4.65 +0.0	1	47
5.00 - 5.45	SPTS	N=10 (1,1/1,2,3,4)	4.00 4.60	2.00 2.90	pockets of fine to coarse sand.	_	(0.65)	L	47
5.00 - 5.45	D 12	-						<u> </u>	11/
5.50 - 6.00	B 13				Stiff to very stiff greyish brown slightly sandy slightly gravelly CLAY. Gravel is subangular to		5.30 -0.5	9	
5.50 - 6.00	B 13				rounded fine to coarse of chalk, mudstone and				TL
					sandstone.		1		47
6.00 - 6.45	UT 14	71 blows 100% rec	6.00						47
							1		47
6.45 - 6.65	D 15	-							Ш.
							1		7Ľ2
7.00 - 7.50	B 16	-				_			TL
							1		47
7.50 - 7.95	SPTS	N=18 (3,3/4,4,5,5)	7.50	Dry					47
7.50 - 7.95	D 17	14-10 (3,3/4,4,3,3)	7.50	Diy					47
							1		Ж.
8.00 - 9.00	B 18	-							7Ľ
							1		4K.
_						=	1		47
_							1		41/
9.00 - 9.45	UT 19	61 blows 100% rec	9.00			_			41/
_							(7.60)		7[/
9.45 - 9.65	D 20	-					1		
						-	1		<u> </u>
							1		47
_								[
Groundwater Entri	es				Depth Related Remarks		Hard Boring		
No. Depth Strike	e (m) Remarks	n after 20 minutes.	Depth Seal		Depths (m) Remarks		Depths (m)	Duration (mins) To	ols used
1 4.65	NUSE 10 2.30 N	ranci zo minutes.	5.30						
see Key to Explorato	on of symbols and all bry Hole Records. All	depths and	ct	VPI	IMMINGHAM		Borehole		
brackets in depth co	etres. Stratum thickne lumn. opyright SOCOTEC	Proje	ct No.	A80	15-18			BH6	
Scale 1:50		2018 13:42:25 Carrie	ed out for	AEC	юм			Sheet 1 of 4	

Depth from (m) 1.20 24.60 Diameter (mm) 200 146 Casing Depth (m) 24.60 24.60 Drilled SS/MB Start Equipment, Methods and Remarks Ground Level to (m) 24.60 34.50 Dando 175./Beretta T44. Cable percussion boring./Rotary core drilling (SWF size) using air mist flush. SPT Hammer ID AR2068, Rod type: 54mm Whitworth. Logged MJS/IH Coordinates (m) E 516781.85 05/04/2018 Checked TC National Grid N 417525.42 End Approved TC 16/04/2018

Samples and	Tests				Strata Description		<u> </u>		
Depth	Type & No.	Records	Date Casing	Time Water	Main	Detail	Depth, Level (Thickness)	Legend	Backfi
10.00 - 10.50	B 21	-			Stiff to very stiff greyish brown slightly sandy	=	,		ПЛ
					slightly gravelly CLAY. Gravel is subangular to rounded fine to coarse of chalk, mudstone and				
10.50 - 10.95	SPTS	N=18 (3,3/4,5,4,5)	10.50	Dry	sandstone.				Ш
10.50 - 10.95	D 22	-							
									H
11.00 - 11.80	B 23	-				=			
									М
]			ШЛ
									LY JI
						11.80-12.00 - occasional gravel		2	▼ /
- 12.00 - 12.45 12.00 - 12.45	SPTS D 24	N=21 (3,4/5,4,6,6)	12.00	4.10		size pockets of gravelly fine to			- A
						coarse sand. Gravel is angular to			
						subangular fine to coarse of chalk			
						coarse of chark			$-V\Pi$
					D. H. L. C. L. CAND		12.90 -8.1	9	- A
- 13.00 - 13.50	B 25	-			Brown gravelly clayey fine to coarse SAND. Gravel is subangular to subrounded fine to coarse	=			
					of chalk and flint.				
13.50 - 13.95	SPTS	N=4 (1,0/1,1,1,1)	13.50	9.10		13.50 SPT may be			
13.70	D 26		1.5.55	5.10		affected by groundwater			
	3 20					disturbance at base			141
14.00 - 15.00	B 27	-				of hole (piping)	(2.30)	7	$ \cdot $
									- A
]			
			06/04/18	1630					- $ $
15.00 - 15.45	SPTS	N=34 (6,6/7,9,10,8)	15.00 09/04/18	9.10		-			$-\square$
15.00 - 15.45	D 28	-	15.00	0800 10.40	Stiff to very stiff light grey slightly sandy gravelly		15.20 -10.4	19	
45.50 40.50	D 00				CLAY. Gravel is angular to subangular fine to				
15.50 - 16.50	B 29	-			coarse of chalk and rare flint.	-			
-									$\mathbf{z}[A]$
								4	řk]]
16.50 - 16.95	SPTS	N=28 (7,7/7,7,7,7)	16.50	14.10				3	<u> </u>
16.70	D 30	-						3	
-									$\ Y \ $
									11/11
									$\ A $
17.50 - 18.00	B 31	-				1			$\ $
- 18.00 - 18.45	SPTS	N=28 (6,7/6,7,7,8)	18.00	Dry]			11/11
18.00 - 18.45	D 32	-		,					II A I
							(6.30)		IY JI
18.50 - 19.50	B 33	-				-		3	↓ /
									ШЛ
								"	ШAI
									IY]]
19.50 - 19.95 19.50 - 19.95	SPTS D 34	N=39 (7,8/9,10,10,10)	19.50	Dry		_			A
19.50 - 21.00	B 35	-							ЩЛ
									\mathbb{I}
roundwater Entries	3				Depth Related Remarks		Hard Boring		
No. Depth Strike (ı	m) Remarks	a often 20 min. +	Depth Sea	led (m)	Depths (m) Remarks		Depths (m)	Duration (mins)	Tools us
2 11.80 3 18.60		n after 20 minutes. m after 20 minutes.	18.7	0					
otes: For explanation e Key to Exploratory	of symbols and ab	obreviations depths and	ct	VPI	IMMINGHAM		Borehole		
duced levels in metre ackets in depth colun	es. Stratum thickne	ess given in Proje	ct No.	A80	15-18			BH6	
© Cop	yright SOCOTEC I	JK Limited AGS	ed out for	AEC				Sheet 2 of 4	
Janu 1.00	14/08/2	2018 13:42:25						OHOGLE UI 4	

Depth from (m) 1.20 24.60 Diameter (mm) 200 146 Casing Depth (m) 24.60 24.60 Drilled SS/MB Start Equipment, Methods and Remarks Ground Level to (m) 24.60 34.50 Dando 175./Beretta T44. Cable percussion boring./Rotary core drilling (SWF size) using air mist flush. SPT Hammer ID AR2068, Rod type: 54mm Whitworth. Logged MJS/IH Coordinates (m) E 516781.85 05/04/2018 Checked TC National Grid N 417525.42 End Approved TC 16/04/2018

pproved TC	16/04/20					Strata Decembring		ł		
Samples and				Date	Time	Strata Description		Depth, Level	Legend	Backfill
Depth	Туре	& No.	Records	Casing	Water	Main Stiff to very stiff light grey slightly sandy gravelly	Detail	(Thickness)		
- 21.00 - 21.45 21.00 - 21.45 21.50 - 22.50	D	PTS 36 37	N=33 (4,5/5,9,9,10)	21.00	Dry	CLAY. Gravel is angular to subangular fine to coarse of chalk and rare flint. Extremely weak cream CHALK. Recovered as gravelly clay.		21.50 -16.	79 4	*
22.50 - 22.95 22.50 - 22.95 - 23.00 - 23.80	D	PTS 38 39	N=44 (7,8/9,10,13,12)	22.00 09/04/18 22.00 10/04/18 22.00	13.00 1700 13.00 0800 4.00	Very weak white, locally orangish brown, CHALK. Recovered as subangular fine to coarse gravel to cobbles.		22.50 -17.	79	
23.80 - 23.91	SF	PTC	50 (25 for 60mm/50 for 50mm)	22.50	4.00			(2.10)		
24.25 - 24.30	SF	тс	50 (25 for 30mm/50 for 20mm)	10/04/18 22.50	1010 4.00					
24.60 - 25.60	95 46 30			13/04/18 22.50	0800 2.60	Weak cream CHALK. Fractures are: 1. Subhorizontal, closely spaced, undulating, rough with dark brown staining. 2. Subvertical, planar, smooth with yellowish brown staining. 3. Incipient fractures are very closely spaced, stepped, striated.			89	
25.60 - 27.10	95 49 37	NI 100 196					26.85-26.98 1No. subangular cobble			
27.10 - 28.40	80 21 8	NI NI 90				Weak cream, occasionally speckled black, CHALK. Recovered as slightly silty subangular fine to coarse gravel. Fractures are subhorizontal, closely spaced, undulating, rough with yellowish brown staining.	of flint 27.02-27.30 AZCL		84	
28.40 - 29.90	77 30 17	NI 120 170	Flush: 24.60 - 34.50 Air/ mist 100%			Weak cream CHALK. Fractures are: 1. Subhorizontal, closely spaced, planar, rough with dark greyish brown staining. 2. Occasionally subvertical, planar, smooth. 3. Incipient fractures are subhorizontal, extremely closely spaced, stepped, rough with occasional dark grey staining.	28.55 rare subangular coarse gravel of flint 29.59-30.66 1No. cobble of flint 29.75-29.95 AZCL	28.70 -23. (2.20)	999	
Depth	TCR SCR	If	Records	Date Casing	Time Water					_ L_
coundwater Entries o. Depth Strike (r 21.50	n) Remar	ks	after 20 minutes.	Depth Seal		Depth Related Remarks Depths (m) Remarks		Hard Boring Depths (m) 23.80 - 24.25	Duration (mins) 60	Tools use Chisel
tes: For explanation e Key to Exploratory luced levels in metre lickets in depth colum © Copy cale 1:50	Hole Reco	ords. All d thicknes COTEC U	epths and s given in K Limited AGS			IMMINGHAM 15-18 OM		Borehole	BH6 Sheet 3 of 4	

Sheet 4 of 4

Drilled SS/MB Start quipment, Methods and Remarks Depth from Casing Depth Ground Level (m) 24.60 34.50 (m) 1.20 24.60 (mm) 200 146 (m) 24.60 24.60 MJS/IH Coordinates (m) .oaaed 05/04/2018 E 516781.85 Cable percussion boring. Rotary core drilling (SWF size) using air mist flush. SPT Hammer ID AR2068, Rod type: 54mm Whitworth. TC lational Grid N 417525.42 Checked End Approved TO Samples and Tests Strata Description Backfill Depth, Level Legend Records/Samples Detail Casing Wate Fractures are: 0 1. Subhorizontal, closely spaced, planar, rough with dark greyish brown staining.
2. Occasionally subvertical, planar, smooth. Ö 29.90 - 31.40 3. Incipient fractures are subhorizontal, extremely closely spaced, stepped, rough with occasional 30.90-33.80 dark 30.90 -26.19 dark grey staining.

Weak to medium strong cream CHALK. 0 grey staining is-possible mudstone O Fractures are: partings (<5mm 1. Subhorizontal, closely spaced, undulating, rough and planar, rough with dark grey staining.
2. Rare 45 degree, undulating, rough with dark 32.90-34.50 rare angular to 0 thick) 0 grey staining.
3. Incipient fractures are subhorizontal, very closely to closely spaced, undulating, striated, stepped, rough. Ō 31.40 - 32.90 О 0 Ö 13/04/18 24.60 1630 2.60 (3.60) 16/04/18 24.60 angular to subangular fine to coarse gravel of flint, rare incipient fractures are closely Ō 2.60 Ö 0 32.90 - 34.50 Ō 33.80-33.89 1No. cobble of chalk and flint conglomerate 0 16/04/18 1300 O 34.50 -29.79 END OF EXPLORATORY HOLE Depth Related Remarks Chiselling Details Depth Sealed Depth Strike Remarks Duration (mins) Tools used Depths (m) Remarks Depths (m) Notes: For explanation of symbols and abbreviations see Key to Exploratory Hole Records. All depths and reduced levels in metres. Stratum thickness given in brackets in depth column. VPI IMMINGHAM Project Borehole BH₆ © Copyright SOCOTEC UK Limited AGS Project No. A8015-18

Carried out for

AECOM

								5	OCOTE
illed MB	Start	Equipment, Methods and Rem	arks				Ground Level		6.49 mOI
gged IH	06/04/2018	Archway Dart.			(m) (m) 1.20 3.60	(mm) (m) 87	Coordinates (m)		E 516506.2
ecked TC	End	Dynamic sampling. SPT Hammer ID: DART235, Roo	type: quick th	read	3.60 4.60	55	National Grid		N 417414.9
		or Friammer ID. Brittizoo, Noc	rtype. quiek tri	rouu.			National Grid		14 17 4 14.5
roved TC	06/04/2018						4		
mples and				_	Strata Description				
Depth	TCR SCR RQD	If Records/Samples	Date Casing	Time Water	Main	Detail	Depth, Level (Thickness)	Legend	Backfi
0.00 - 0.50	D 2		Casing	vvalei	Dark brown slightly sandy slightly gravelly CLAY	-	(THICKHESS)	***************************************	٥
0.00 - 0.50	B 1	- 400kD N/A			with low cobble content. Gravel is subangular to		(0.50)		Ĩ. A
0.25	HV	p 120kPa, r N/A			rounded fine to medium, rarely coarse, of chalk		(0.50)		9
0.50	HV	p 120kPa, r N/A			and mudstone with occasional concrete, quartz and flint. Cobbles are subangular of chalk.	0.50 rare rootlets -	0.50 +5.99		-VL
0.50 - 1.20 0.50 - 1.20	D 4 B 3				(MADE GROUND)	<i>]</i> :			
					Dark brown, locally mottled black, slightly sandy slightly gravelly CLAY. Gravel is subangular to		(0.00)		
1.00	HV	p 120kPa, r N/A			subrounded fine to medium of chalk, mudstone	_	(0.90)		
1.20 - 1.65	SPTS	N=10 (2,2/2,2,3,3)			and rare flint. Strong hydrocarbon odour.	-			
1.20 - 1.65 1.20 - 1.70	D 5 B 7				(MADE GROUND)	_	1.40 +5.09		
1.20 - 2.00 1.30 - 1.50	L D6	100% rec, diameter 87mm			Firm reddish brown, occasionally mottled red, slightly sandy slightly gravelly CLAY. Gravel is	-	(0.35)		
1.80 - 2.00	D8				angular to subrounded fine to coarse of chalk and	<u> </u>	1.75 +4.74		
					mudstone with occasional flint and rare sandstone.	/	(0.25)		- K /
2.00 - 2.45 2.00 - 2.20	SPTS D 10	N=26 (3,5/4,5,8,9)			Firm grey, mottled brown, slightly sandy slightly	2.10 unknown	2.00 +4.49		
2.00 - 2.45	D 9				gravelly CLAY. Gravel is angular to subrounded	fibrous rock/material			
2.00 - 2.80 2.00 - 2.80	B 12 L	100% rec, diameter 87mm			fine to coarse of chalk and mudstone with occasional flint and rare sandstone.	2.40 occasional			- V /
2.30 - 2.50	D 11				Firm to stiff indistinctly laminated reddish brown,	pockets of reddish – pink clayey fine		1	
2.80 - 3.25	SPTS	N=20 (4,4/4,4,5,7)			mottled grey, slightly sandy slightly gravelly CLAY.	sand	(1.60)		_ / /
2.80 - 3.25	D 13	-			Gravel is angular to subrounded fine to coarse of chalk and mudstone with occasional flint and rare	-	(1.00)		
2.80 - 3.60 3.00 - 3.20	L D 14	100% rec, diameter 87mm			sandstone.				
3.40 - 3.60	D 15					-	-		
3.60 - 4.05	SPTS	N=20 (4,5/4,4,5,7)			Consideration of the state of t		3.60 +2.89		-1/
3.60 - 3.80 3.60 - 4.05	D 16 D 17				Firm dark brown slightly sandy slightly gravelly CLAY. Gravel is subangular to rounded fine to				
3.60 - 4.60	L	75% rec, diameter 55mm			medium of chalk.	-	(0.60)		
									\forall
4.20 - 4.40	D 18				Brown fine to medium SAND.	=	4.20 +2.29	1	록 / ,
4.50 - 4.60	D 19					4.50-4.60 brown -	(0.40)		
4.60 - 5.05	SPTS	N=16 (3,3/3,4,4,5)			Firm dark brown slightly gravelly sandy CLAY.	slightly gravelly fine -	4.60 +1.89		- Y /
4.60 - 5.05	D 20			4000	Gravel is subangular to rounded fine to medium of	to coarse sand. Gravel is	(0.45)		
			06/04/18	1200	chalk.	subangular to well			
					END OF EXPLORATORY HOLE	rounded fine to medium of chalk	5.05 +1.44		
						and rare quartz			
						-	-		
						_			
						-			
						-			
						-	-		
							1		
						-	-		
						-]		
						-	_		
							-		
						-	1		
						-	+		
							7		
						-			
						-	+		
							1		
						-	1		
						-	-		
							1		
						1 -			
						-	+		
]		
	+ +		1					1	-
ndwater Entries					Depth Related Remarks		Chiselling Detail		
Depth Strik	e Remarks		Depth Sea	aled	Depths (m) Remarks		Depths (m)	Duration (mins) Tools u
4.20					0.00 - 1.20 Hand excavated inspection pit.				
For evel-	o of our	d abbreviation			IMMINICHAM		Barak -1-		
For explanation by to Exploratory	y Hole Records.	. All depths and		VPI	IMMINGHAM		Borehole		
ed levels in metrets in depth colu	es. Stratum thic		No.	ΔRO	15-18			WS1	
© Cop	oyright SOCOTI	EC UK Limited AGS							
e 1:50		4/08/2018 13:47:31 Carried	out for	AEC	OW		I	Sheet 1 of 1	

									so	COTEC
rilled MB	Start	Equipment, Methods and Rema	arks				ameter Casing Depth mm) (m)	Ground Level		5.46 mOD
gged IH	10/04/2018	Archway Dart. Dynamic sampling.				(m) (m) (1.20 1.70 1.70 2.50	87 77	Coordinates (m)		E 516529.35
ecked TC	End	SPT Hammer ID: DART235, Rod	type: quick th	read.		2.50 3.30	67	National Grid		N 417368.31
proved TC	10/04/2018									
amples and	l Tests				Strata Description	า				
Depth	TCR SCR RQD	If Records/Samples	Date Casing	Time Water	Ma	ain	Detail	Depth, Level (Thickness)	Legend	Backfil
0.00 - 0.50	D 2	-			Brown, mottled orange ar		-	, ,		۰
0.00 - 0.50 0.25	B 1 HV	p 120kPa, r N/A			slightly gravelly CLAY. Gr rounded fine to coarse of		-			H
0.50	HV	p 120kPa, r N/A			sandstone. Strong oil/hyd		0.50 rare angular to -			
0.50 - 1.20 0.50 - 1.20	D 4 B 3	,			(MADE GROUND)		subrounded fine to - medium gravel of -	(1.20)		
0.00 1.20							flint and sandstone with rare chalk			\Box
1.00	HV	p 120kPa, r N/A					with rare chair.			
1.20 - 1.65 1.20 - 1.40	SPTS D 5	N=16 (2,2/3,3,5,5)			Firm orangish brown, mo		1 :	1.20 +4.26		PH
1.20 - 1.65 1.20 - 1.70	D 6 B 8				slightly gravelly CLAY wit subangular to subrounde		1.50-2.50 indistinctly –			
1.20 - 1.70 1.50 - 1.70	L D7	100% rec, diameter 87mm			and mudstone with rare f		laminated -			\mathbb{Z}_{2}
1.70 - 2.15 1.70 - 2.15	SPTS D 9	N=28 (3,3/5,8,7,8)					-	(1.30)		//
1.70 - 2.50	B 11						_			
1.70 - 2.50 2.20 - 2.40	L D 10	100% rec, diameter 77mm					2.30 gravel size -			
2.40 - 2.50 2.50 - 2.95	D 12 SPTS	N=22 (2,4/4,5,6,7)			F:		pocket of dark grey - fine sand -	2.50 +2.96		\perp
2.50 - 2.95 2.50 - 3.10	D 13 B 16				Firm indistinctly laminated grey, CLAY.	d dark brown, mottled	-		F_=_1	//
2.50 - 3.30 2.85 - 3.10	L D 14	100% rec, diameter 67mm					2.85-3.10 gravel	(0.60)		
3.10 - 3.30	D 15				F:		size pockets of finesand	3.10 +2.36		
3.30 - 3.75	SPTS	N=26 (3,5/5,5,8,8)			Firm yellowish dark brow sandy slightly gravelly CL	AY. Gravel is angular to] =	(0.20) - 3.30 +2.16		
3.30 - 3.75	D 17		10/04/18	1100	subangular fine to medium sandstone.	m of chalk, flint and	-	(0.45)		//
			10/04/16	1100	Firm dark brown slightly of		-			
					Gravel is subangular to s medium of chalk and san			3.75 +1.71		
						RATORY HOLE	_			
							-			
							_			
							-			
							-			
							_			
							-			
							_			
							_			
							_			
							_			
]			
							_	1		
							-	1		
							-	1		
							_	-		
							-			
							-	7		
							-	7		
							-	7		
							_	1		
							-	7		
							-			
							-			
								1		
]	}		
]	-		
] =			
							=	1		
	 									
oundwater Entries	Remarks		Depth Sea	aled	Depth Related Remarks Depths (m) Remarks			Chiselling Detail Depths (m)	s Duration (mins)	Toole us
o. Depth Strike	Remarks		թեհա 269	uicu	0.00 - 1.20 Hand excava	ated inspection pit.		Debuis (iii)	varauvii (IIIIIIS)	เบบเธ นร
					0.00 - 3.75 No groundwa	ater encountered during drilling.				
es: For explanation	of symbols and	d abbreviations Project		VPI	IMMINGHAM			Borehole		
Key to Exploratory iced levels in metre	Hole Records. es. Stratum thick	All depths and kness given in	No						WS2	
kets in depth colur © Cop	nn. yright SOCOTE	EC UK Limited AGS		AEC	15-18					
cale 1:50		/08/2018 13:47:32 Carried	out ior	AEC	, OIM			I	Sheet 1 of 1	

							S	OCOTE
illed MB	Start	Equipment, Methods and Rema	ırks	Depth from to		Ground Level		5.52 mOl
gged IH	10/04/2018	Archway Dart. Dynamic sampling.		(m) (m) 1.20 2.00	(mm) (m) 87	Coordinates (m)		E 516555.6
ecked TC	End	SPT Hammer ID: DART235, Rod	type: quick thread.	2.00 3.00 3.00 4.00	77 67	National Grid		N 417360.7
proved TC	10/04/2018							
mples and	d Tests			Strata Description		1		
Depth	TCR SCR RQD	If Records/Samples	Date Tim	Main	Detail	Depth, Level	Legend	Backfi
0.00 - 1.20	RQD D 2		Casing Wat	Brown, mottled black and grey and rarely orangi		(Thickness)	************	٥
0.00 - 1.20	B 1	-		brown, slightly sandy slightly gravelly CLAY with				· 4
				frequent roots and wood fragments. Gravel is subangular to rounded fine to medium of chalk				H
				and mudstone with occasional concrete. 1No.	-	(1.20)		$-V\Pi$
				angular cobble of chalk.		(1.20)		-1/1
				(MADE GROUND)				ľ
					_			
1.20 - 1.65	SPTS	N=11 (2,2/2,2,3,4)		Soft, becoming firm, orangish brown slightly san	tv .	1.20 (0.10) +4.32 1.30 (0.10) +4.22		-1/4
1.20 - 1.30 1.20 - 1.65	D 3 D 4	-		slightly gravelly CLAY. Gravel is subangular to		1.30 (0.10) +4.22		T J
1.20 - 2.00 1.30 - 2.00	L B6	100% rec, diameter 87mm		rounded fine to medium of mudstone and flint wi rare chalk.	:h / -			
1.50 - 1.70	D 5	-		Firm to stiff brown, mottled grey and rarely black				-1 A
0.00 0.45	ODTO	N 00 (0 5(0 5 0 0)		slightly sandy slightly gravelly CLAY. Gravel is		-		Γ
2.00 - 2.45 2.00 - 2.20	SPTS D 7	N=23 (3,5/6,5,6,6)		angular to rounded fine to coarse of chalk and fli with rare sandstone.	2.05-2.55 indistinctly laminated			
2.00 - 2.45 2.00 - 3.00	D 8 L	100% rec, diameter 77mm		war are sandstone.	2.30 becoming with	(0.40)		
2.30 - 3.00	B 10	100 % rec, diameter 77mm			no gravel	(2.10)		
					2.55 becoming thinly laminated			
2.80 - 3.00	D 9				uning laminated			
3.00 - 3.45	SPTS	N=14 (4,5/4,3,3,4)						14
3.00 - 3.45	D 11	-						
3.00 - 4.00	L	40% rec, diameter 67mm						
3.40 - 3.65	D 12	-		Brown fine to coarse SAND.	<u> </u>	3.40 +2.12		علما
3.65 - 3.80	D 13					(0.25) 3.65 +1.87		
				Firm brown, mottled grey, sandy slightly gravelly CLAY. Gravel is angular to subrounded fine to				- K /
4.00 - 4.45	SPTS	N=20 (2,3/5,4,5,6)		medium of chalk.		(0.00)		
						(0.80)		
			10/04/18 000	0				//
				END OF EXPLORATORY HOLE	- -	4.45 +1.07		/
				END OF EXPEDITATION FINEE		_		
						-		
					_			
						-		
					_			
					-	-		
						7		
					_	\exists		
						7		
						1		
					-	_		
						-		
						1		
					_	∃		
						-		
					-			
						-		
						1		
							1	
Indwater Entrie			Danth O	Depth Related Remarks		Chiselling Detai		T
Depth Strik	e Remarks		Depth Sealed	Depths (m) Remarks 0.00 - 1.20 Hand excavated inspection pit.		Depths (m)	Duration (mins)	Tools u
				0.00 - 1.00 Material too granular for hand vane test	ng.			
				0.00 - 4.45 No groundwater encountered during dri	ing.			
: For explanation	n of symbole an	d abbreviations	v	PI IMMINGHAM		Borehole		
ey to Explorator	y Hole Records.	. All depths and	V			Sololiole		
ed levels in meti ets in depth colu	res. Stratum thio ımn.	Project	No. A	015-18			WS3	
© Co	pyright SOCOTI	EC UK Limited AGS Carried		ECOM				
e 1:50	14	1/08/2018 13:47:32	A	·····			Sheet 1 of 1	

		_							S	OCOTEC
rilled MB	Start	Equipment, Methods and Rema	arks					Ground Level		5.10 mO
ogged IH	06/04/2018	Archway Dart.				(m) (m) 1.20 2.00	(mm) (m) 87	Coordinates (m)		E 516586.0
ecked TC	End	Dynamic sampling. SPT Hammer ID: DART235, Roo	type: quick t	hread		2.00 3.00 3.00 3.60	77 57	National Grid		N 417401.6
		OF 1 Hammer 15. 574(1200, 100	rtype. quick t	meda.		3.00 3.00	31	ivational Grid		14 4 17 40 1.0
proved TC	06/04/2018							4		
amples and					Strata Description	1				
Depth	TCR SCR RQD	If Records/Samples	Date Casing	Time Water	Ma	ain	Detail	Depth, Level (Thickness)	Legend	Backfi
0.00 - 0.50	D 2				Brown, occasionally mottl	led grey, slightly sandy			***********	0.0
0.00 - 0.50 0.25	B 1 HV	p 120kPa, r N/A			slightly gravelly CLAY. Gr	avel is subangular to	-			^ 1
					subrounded fine to coarse with rare flint and occasion					- i'al
0.50 0.50 - 1.20	HV D 4	p 120kPa, r N/A			(MADE GROUND)	mai roottoto.	0.50 dark brown —			$ \Gamma$ Π
0.50 - 1.20	B 3	-					-	(1.40)		-1/11
							-			
1.00	HV	p 120kPa, r N/A					_			
1.20 - 1.65 1.20 - 1.40	SPTS D 5	N=19 (2,3/4,5,5,5)								4
1.20 - 1.65	D 6	-			Firm brown, occasionally	mottled grey and rarely	1.35-1.40 layer of brick, recovered as	1.40 +3.70		
1.20 - 2.00 1.20 - 2.00	B 8 L	100% rec, diameter 87mm			reddish brown, slightly sa	indy slightly gravelly	subangular medium _ to coarse gravel _			$- \circ $
1.60 - 1.80	D 7	-			CLAY. Gravel is subangul coarse of chalk and muds		1.60 pocket of _			
2.00 - 2.45	SPTS	N=22 (3,4/5,5,6,6)			sandstone and flint.		sandy clay (30mm - diameter)—			1,4
2.00 - 2.20 2.00 - 2.45	D 10 D 9	-					2.00-2.40 sandy -	(1.60)		
2.00 - 3.00	L	75% rec, diameter 77mm					2 40 indictionally	(1.50)		90
2.40 - 2.60	D 11	-					2.40 indistinctly - laminated -			
	1						2.70 thinly -	1		-V
2.80 - 3.00	D 12	-					laminated -	1		
3.00 - 3.45 3.00 - 3.20	SPTS	N=20 (2,3/4,5,5,6)			Medium dense orangish t	brown fine to coarse		3.00 +2.10	1	록 /
3.00 - 3.45	D 13 D 14	-			SAND.	2 12 124100				
3.00 - 3.50 3.00 - 3.60	B 16 L	83% rec, diameter 57mm						(0.60)		
3.50 - 3.60	D 15	-					3.50-3.60 brown — slightly clayey fine -	3.60 +1.50		
3.60 - 4.05 3.60 - 4.05	SPTS D 17	N=15 (3,3/3,4,4,4)			Firm dark brown slightly g Gravel is subangular to re		to medium sand =	-		//
			06/04/18	1500	chalk and mudstone.	burided line to mediam of		(0.45)		
					END OF EXPLO	RATORY HOLE	 	4.05 +1.05		
							-			
							_			
							-			
							-			
							-			
							_			
							-			
							-			
							_			
							_			
							_			
							-			
							_			
	1							1		
	1						-	1		
	1						-	-		
	1							1		
	1						-			
	1						-	1		
	1						-	-		
	1									
	1							1		
	1						-	1		
	1						-	1		
	1									
	1							1		
								1		
	+ +									
undwater Entries		·			Depth Related Remarks			Chiselling Detai		_
Depth Strik	e Remarks		Depth Se	ealed	Depths (m) Remarks 0.00 - 1.20 Hand excava	ated inspection pit.		Depths (m)	Duration (mins)	Tools us
5.00										
s: For explanation Key to Exploratory				VPI	IMMINGHAM			Borehole		
ced levels in metr	es. Stratum thic		No	ΛΩΛ	15-18				WS4	
ets in depth colu © Cop	mn. pyright SOCOTE	EC UK Limited AGS								
e 1:50	14	//08/2018 13:47:32 Carried	out for	AEC	OIII				Sheet 1 of 1	

Head NAC	Cta-t	Employment 88-46 · · · ·	manules.			Daniti for			Crows		170 mOl
iled MB	Start	Equipment, Methods and Re	narks			Depth from (m)		meter Casing Depth mm) (m)	Ground Level		4.70 mOI
iged IH	10/04/2018	Archway Dart. Dynamic sampling.				1.20 2.00	2.00 3.00	87 77	Coordinates (m)		E 516626.8
cked TC	End	SPT Hammer ID: DART235, R	od type: quick t	hread.		3.00	5.00	67	National Grid		N 417337.4
roved TC	10/04/2018								1		
mples and					Strata Description	า					
Depth	TCR SCR RQD	If Records/Samples	Date Casing	Time Water	Ma	ain		Detail	Depth, Level (Thickness)	Legend	Backfi
0.00 - 1.20	D 2	-	Casing	water	Firm dark brown, mottled	grev and black.	sliahtly		(Tillekiless)	***********	٥
0.00 - 1.20 0.25	B 1 HV	p 110kPa, r N/A			sandy slightly gravelly CL	AY with low cobl	ble	=	1		· A
					content and occasional ro subangular to subrounde	ootlets. Gravel is d fine to coarse o	of	_			-1
0.50	HV	p 100kPa, r N/A			mudstone, chalk, sandsto	one and occasion	nal brick	_	(1.25)		Γ
					fragments. Cobble is sub (MADE GROUND)	angular of chalk.		_	(1.25)		
1.00	HV	p 100kPa, r N/A			(WARE GROONE)			<u> </u>			
	SPTS	· ·						1 20 coft -			
1.20 - 1.65 1.20 - 1.25	D 3	N=9 (1,2/2,2,2,3)			Firm, becoming stiff, grey			1.20 soft -	1.25 +3.45	****	
1.20 - 1.65 1.20 - 2.00	D 4 L	100% rec, diameter 87mm	ı		slightly gravelly CLAY. Gr rounded fine to coarse of		ar to well	_	1		-1/4
1.25 - 1.80 1.50 - 1.70	B 7 D 5				occasional sandstone an			_			
1.80 - 2.00	D 6							1.80 brown mottled - grey. Gravel is chalk -			
2.00 - 2.45 2.00 - 2.45	SPTS D 8	N=20 (3,4/5,4,5,6)						and occasional— mudstone			
2.00 - 3.00 2.00 - 3.00	B 11 L	88% rec, diameter 77mm						-			
2.20 - 2.40	D 9	00% rec, diameter 77mm						2.35-5.45 indistinctly _ laminated _			Γ
								2.65-5.45 rare			-1/1
2.80 - 3.00	D 10	-						gravel _	-		$\perp \downarrow$
3.00 - 3.45	SPTS	N=24 (3,4/5,6,6,7)							-		$ \cdot $
3.00 - 3.20 3.00 - 3.45	D 12 D 13							-			A
3.00 - 4.00	L	85% rec, diameter 67mm						3.35-5.45 soft,	(4.20)		
								gravelly. Gravel is _ subangular to _	-		
3.75 - 3.85	D 14							subrounded fine to _ medium of chalk _			loF
								and mudstone with _			_ _
4.00 - 4.45 4.00 - 4.45	SPTS D 15	N=23 (4,4/4,5,6,8)						rare sandstone and— flint -			1_4
4.00 - 5.00	L	Diameter 67mm						3.40 dark brown - 3.75 firm -			O L
								4.00-4.45	1		
								occasional gravel = size pockets of sand =			1/
	1							=			V.
5.00 - 5.45	SPTS	N=19 (4,4/4,4,5,6)						_	-		
5.00 - 5.45	D 16	-	10/04/18	1200				=	1	,	1/
	1		10/04/18	1300				=			//
	1				END OF EXPLO	RATORY HOLE	E		5.45 -0.75		
	1							=			
	1							-			
	1										
								-			
								=			
								_			
								_			
	1										
	1							=			
	1							=	1		
	1							=			
	1										
	1							=			
	1							-	1		
	1] =	-		
	1								1		
	1							=	1		
	1							_			
	1							=			
	1							-			
	1] =			
									-		
	1										
ndwater Entries	s				Depth Related Remarks				Chiselling Detail	s	
Depth Strik			Depth Se	ealed	Depths (m) Remarks					Duration (mins)	Tools u
					0.00 - 1.20 Hand excava	ited inspection pit. ater encountered du	uring drilling				
					140 groundwa	00001116160 00	g unining.				
		d abbreviations All depths and	t	VPI	IMMINGHAM				Borehole		
ed levels in metrets in depth colu	es. Stratum thi		t No.	ልደባ	15-18					WS5	
© Cop		EC UK Limited AGS	d out for	AEC						Sheet 1 of 1	
1:50		4/08/2018 13:47:33	u out lot	AEU	· · · · ·					Speet 1 of 1	

		L .			1				T		OCOTE
lled MB	Start	Equipment, Methods and Rem	arks					meter Casing Depth mm) (m)	Ground Level		5.69 mO
ged WH	11/04/2018	Archway Dart. Dynamic sampling.				1.20	3.00	87	Coordinates (m)		E 516668.5
cked TC	End	Dynamic sampling. SPT Hammer ID: DART235, Roc	type: quick t	hread.		3.00 4.00	4.00 5.00	77 67	National Grid		N 417414.7
oved TC	11/04/2018										
nples and		<u> </u>			Strata Description				1		
iipies aiic			Date	Time	Strata Description	<u> </u>			Depth, Level	Legend	Backfi
Depth	TCR SCR RQD	If Records/Samples	Casing	Water	Ma	in		Detail	(Thickness)	Legena	Dacki
0.00 - 1.20	B 1	-			Brown sandy gravelly CL/			_			۰
0.25	HV	p 90kPa, r N/A			to subrounded fine to coa and sandstone.	rse of chalk, mu	ıdstone	_			آ ا
					(MADE GROUND)			_			
0.50 0.60	HV D 2	p 90kPa, r N/A			,			_			Γ
								_			
								-	(1.70)		
1.00	HV	p 90kPa, r N/A						_			
1.20 - 1.65	SPTS	N=8 (1,1/3,1,1,3)						1.20-1.30 1No	-		-1/4
1.20 - 1.65 1.20 - 2.00	D3 L	94% rec, diameter 87mm						subrounded cobble - of chalk -			T J
1.30 - 1.70	B 5							1.40-1.50 dark -			
1.50 1.70 - 2.00	D 4 B 7		1		Firm to stiff brown, occasi	onally mottled o	irev.	greyish brown clay	1.70 +3.99		$\perp \mid \perp \mid$
1.80	D 6	-			slightly sandy slightly grav	elly CLAY. Grav	vel is		1		$ \cdot $
2.00 - 2.45 2.00 - 2.45	SPTS D 8	N=22 (3,3/4,6,5,7)			subangular fine to coarse	of chalk, flint an	nd	-	1		- A
2.00 - 3.00	B 10		1		sandstone.			-	+		ľ
2.00 - 3.00	L	100% rec, diameter 87mm	1						1		- /
2.50	D 9	-	1					-	1		-1 A
			1						(1.99)		Y
2.80 - 3.25 2.80 - 3.25	SPTS D 11	N=21 (4,4/5,4,6,6)	1					-	1		- A
3.00 - 3.60	B 13		1					_	1		
3.00 - 4.00	L	100% rec, diameter 77mm	1						1		T T
								=			
3.50	D 12	-						_	-		
					Soft brown CLAY			3.69-3.80 light -	3.69 +2.00		<u> </u>
3.80 - 4.25 3.80	SPTS D 14	N=29 (5,8/8,7,7,7)	1		COIL DIOWII CLAT			brown fine to coarse - sand pocket -	(0.31)	<u></u> = 1	
3.80 - 4.25	D 15		1		Medium dense light brown	n gravelly slightly	ly clavey	Sana pocket	4.00 +1.69	7.00 200 1	록 / /
4.00 - 5.00	L	70% rec, diameter 67mm			fine to coarse SAND with	rare pockets of	gravelly	=			
4.30 - 5.00	B 17	-			clay. Gravel is subangular			_	1		1/
4.50	D 16	-	1] =	+		
			1					-	(1.45)		-1/
								-	(1.45)		-V
5.00 - 5.45	SPTS	N=19 (4,4/5,4,5,5)] _			
			44/04/40	4200				=		***	1/
			11/04/18	1100				-	1		
					END OF EXPLO	RATORY HOLE	E		5.45 +0.24		
			1						1		
			1					=	1		
			1					-	1		
									1		
			1						1		
			1					-	1		
									1		
			1					-	1		
			1					_	+		
									1		
			1						1		
			1] =	+		
			1						1		
								-			
			1						+		
			1					=	1		
								-	1		
			1] =	7		
			1					=	1		
									-		
			1] =	1		
			1					=	1		
			1					-	1		
			1]	1		
			1						1		
								-	_		
	+		-							<u> </u>	
ndwater Entries	3		1		Depth Related Remarks				Chiselling Detail	s	
Depth Strike	e Remarks		Depth Se	ealed	Depths (m) Remarks	ted iner40 "			Depths (m)	Duration (mins)	Tools u
4.00					0.00 - 1.20 Hand excava	ted inspection pit.					
		d abbreviations Project		VPI	IMMINGHAM				Borehole		
d levels in metre	es. Stratum thic	. All depths and ckness given in	Na		45.40					WS6	
ts in depth colur		EC UK Limited AGS	NO.		15-18					4430	
e 1:50	.,	Carried	out for	AEC	-014					Sheet 1 of 1	

											OCOTE
d	MB	Start	E	quipment, Methods and Rema	ırks			iameter Casing Depth (mm) (m)	Ground Level		5.79 mOl
ed	WH	11/04/2018	D	Archway Dart. Dynamic sampling.			1.20 3.00 3.00 4.00	87 77	Coordinates (m)		E 516708.4
ked		End	s	SPT Hammer ID: DART235, Rod	type: quick t	hread.	4.00 5.00	67	National Grid		N 417492.5
oved		11/04/2018	3						4		
пp	les and				Date	Time	Strata Description		Bentle Level	T	D1-61
	Depth	TCR SCR RQD	If	Records/Samples	Casing	Water	Main	Detail	Depth, Level (Thickness)	Legend	Backfi
	0 - 0.30 0.20	B 1 D 2					Brown slightly gravelly sandy CLAY with rootlets and low cobble content. Gravel is subangular fine		(0.30)		٠.۵
	0 - 0.80	B 3					to coarse of chalk and sandstone. Cobbles are	1 :	0.30 +5.49		ا ا
	0.50	D 4		-			subrounded of chalk. (TOPSOIL)	0.50-0.70 pockets of -			- $ $
0.8	0 - 1.20	B 5					Light brown sandy gravelly CLAY with low cobble content. Gravel is subangular fine to coarse of	clay	(0.90)		$-\square$
	0.90	D 6					sandstone. Cobbles are subrounded of chalk.				
12	0 - 1.65	SPTS		N=6 (3,3/2,2,1,1)			(MADE GROUND)		1.20 +4.59		
1.2	0 - 1.65 0 - 1.80	D7 B9		14-0 (0,0/2,2,1,1)			Soft greyish brown slightly sandy CLAY with rare subrounded fine to medium gravel of chalk.		1.20		
1.2	0 - 2.00 1.50	L D8		100% rec, diameter 87mm			· ·	-	(0.60)		И
	0 - 2.00	B 11							1.80 +3.99		
	1.90 0 - 2.45	D 10 SPTS		N=19 (3,4/4,4,5,6)			Firm, becoming stiff, brown, mottled light grey, slightly sandy slightly gravelly CLAY. Gravel is				
2.0	0 - 2.45 0 - 3.00	D 12 L		80% rec, diameter 87mm			subrounded fine to coarse of chalk.				
	0 - 3.00	B 14		00 % rec, diameter ormin							\square
								-			
	2.80	D 13		-]	1		
3.0	0 - 3.45	SPTS		N=23 (4,5/5,6,6,6)					1		$ \cdot $
3.0	0 - 3.45 0 - 4.00	D 15 L		40% rec, diameter 77mm							4
				,				:	(3.20)		
3.6	0 - 4.00	B 17		-					1		
	3.80	D 16									\mathbb{Z}_{2}
	0 - 4.45	SPTS		N=23 (5,5/5,6,6,6)							
	0 - 4.45 0 - 5.00	D 18 L		90% rec, diameter 67mm							
											1/
4.6	0 - 5.00	B 20		-				-			//
								4.80-4.85 soft brown			//
5.0	4.90 0 - 5.45	D 19 SPTS		N=18 (5,5/5,4,5,4)			Medium dense light brown gravelly fine to coarse	clay -	5.00 +0.79	1	マ /
5.0	0 - 5.45	D 21			11/04/18	1300	SAND. Gravel is subrounded coarse of igneous		(0.45)		
					11/04/10	1000	rock and chalk.		5.45 +0.34		//
							END OF EXPLORATORY HOLE	-	-		
									1		
									1		
								-			
								-			
								_			
]			
									1		
								<u> </u>	1		
]	1		
									1		
								:	1		
]	1		
								_			
								:	1		
] :			
									1		
								_1		1	
nd	ator Entris -						Donth Polated Pomarko		Chicalling Date		
	ater Entries Depth Strike		8		Depth Se	aled	Depth Related Remarks Depths (m) Remarks		Chiselling Detai Depths (m)	s Duration (mins)	Tools u
	5.00						0.00 - 1.20 Hand excavated inspection pit. 0.00 - 1.00 Material too granular for hand vane testing.			,	
							material too granulal for Hariti valle testilig.				
: For	explanation	of symbols	and a	bbreviations Project		VPI	MMINGHAM		Borehole		
ey to	Exploratory	Hole Record	ds. All	I depths and		•••				14/07	
	depth colun			Project	No.	A80	5-18			WS7	
	1:50			/2018 13:47:33 Carried	out for	AEC	OM		I	Sheet 1 of 1	

									SC	COTEC
illed MB	Start	Equipment, Methods and Rei	marks			Depth from to (m)	Diameter Casing Depth (mm) (m)	Ground Level		4.53 mOE
gged WH	11/04/2018	Archway Dart. Dynamic sampling.				1.20 2.00 2.00 3.00	87 77 67	Coordinates (m)		E 516813.22
ecked TC	End	SPT Hammer ID: DART235, R	od type: quick th	nread.		3.00 4.00	67	National Grid	ļ	N 417461.78
amples and	11/04/2018				Strata Description	<u>l</u>		4		
Depth	TCR	If Records/Samples	Date	Time		ain	Detail	Depth, Level	Legend	Backfil
0.00 - 1.20	RQD B 1	II Records/Samples	Casing	Water	Brown slightly sandy slig			(Thickness)	***************************************	0 1
0.25	HV	p 120kPa, r N/A			rootlets. Gravel is subang sandstone.	gular fine to medium of				ا م
0.50	HV	p 120kPa, r N/A			(MADE GROUND)		_	_		
0.60	D 2							(1.35)		
1.00	HV	n 120kDo n N/A								1//[
1.20 - 1.65	SPTS	p 120kPa, r N/A N=12 (1,1/3,3,3,3)					_			
1.20 - 1.65 1.20 - 2.00	D3 L	100% rec, diameter 87mn	,		Firm brown slightly sandy	y slightly gravelly CLAY	<u>. </u>	1.35 +3.18		
1.35 - 1.70 1.50	B 5 D 4				Gravel is subrounded fine sandstone.			(0.35)		
1.70 1.70 - 2.00	D 6 B 7	-			Firm brown slightly sandy Gravel is subrounded fine	y slightly gravelly CLAY		1.70 +2.83		A
2.00 - 2.45 2.00 - 2.45	SPTS D 8	N=18 (3,4/4,4,5,5)			sandstone.	c to medium or chark ar	_			
2.00 - 3.00	L	40% rec, diameter 77mm						_		
							-			A
2.70 2.70 - 3.00	D 9 B 10	-						(2.00)		$ \cdot $
3.00 - 3.45	SPTS	N=12 (3,3/3,2,3,4)					_	_		
3.00 - 3.45 3.00 - 4.00	D 11 L	30% rec, diameter 67mm								
							_			
3.70	D 12	-			Soft brown CLAY.			3.70 +0.83		
4.00 - 4.45	SPTS	N=14 (3,3/3,3,4,4)			COR BIOWIT CLAT.		_			
4.00 - 4.45	D 13	14 (3,3/3,3,4,4)	44/04/40	4500				(0.75)		9
			11/04/18	1500				4.45 +0.08		
					END OF EXPLO	DRATORY HOLE	-	4.45		
							-			
								_		
							-	_		
							_	_		
								_		
								_		
								_		
							_	_		
							-	_		
								_		
							-			
								_		
							-			
							_	_		
oundwater Entries					Depth Related Remarks			Chiselling Details		
o. Depth Strike			Depth Se	aled	Depths (m) Remarks 0.00 - 1.20 Hand excave	ated inspection pit. ater encountered during dri	illing.		Ouration (mins)	Tools us
es: For explanation Key to Exploratory	Hole Records.	All depths and	t	VPI	IMMINGHAM			Borehole		
ced levels in metro kets in depth colui	mn.	Projec	t No.	A80	15-18				WS8	
© Cop ale 1:50		EC UK Limited AGS Carrie	d out for	AEC	ЮМ				Sheet 1 of 1	

ırıaı	PIT L	_og					
							SOCOTEC
Logged WH	Start	Equipment, Methods and I	Remarks Dimension and Orientation		Ground Level		6.33 mOD
Checked TC	11/04/2018	Tracked 360 excavator. Machine excavated.	Width 0.60 m	_	Coordinates (m)		E 516544.31
Approved TC	End		Length 4.00 m	270 (Deg)	National Grid		N 417427.12
Samples an	11/04/2018 d Tests		Strata Description		ł		
Depth	Type & No.	Records	Main	Detail	Depth, Level (Thickness)	Legend	Backfill
		,	Dark brown sandy clayey subangular to subrounded fine to coarse	-	(THICKHESS)		
- 0.10 - 0.10 - 0.30	D1 B2	-	GRAVEL of sandstone, chalk, clinker, macadam and slag with low cobble content. Cobbles are subrounded to subangular of concrete and chalk.	- -			
-			(MADE GROUND)	_	(0.50)		
-				=			
-				_	0.50 +5.83		
- - -			Firm dark greyish brown, mottled black, slightly sandy gravelly CLAY. Gravel is subangular to subrounded of brick, clinker, sandstone, flint and	-	0.50 +5.6	·	
0.70	D3		chalk. Strong oil/hydrocarbon odour. (MADE GROUND)	-			
0.70 - 0.90	B4		(MADE GROUND)	_	(0.60)		
				-			
-				_			
			Stiff brown, mottled grey, slightly sandy gravelly CLAY, Gravel is	_	1.10 +5.23	3	
1.20 1.20	HV D5	p 120kPa, r N/A	Stiff brown, mottled grey, slightly sandy gravelly CLAY. Gravel is subrounded fine to medium of chalk and sandstone.	_			
1.20 - 1.50	B6			-			
				_			
-				_			
				-			
				=	(4.40)		
				_	(1.40)		
- 2.00	HV	p 120kPa, r N/A		_			
2.00 2.00 - 2.20	D7 B8	p 120Kl u, 1 147K		-			
2.00 2.20	50			-			
				_			
				_			
			Firm brown, mottled light grey, slightly sandy slightly gravelly CLAY.	_	2.50 +3.83	3 🚊 🗒	
			Gravel is subangular to subrounded fine to coarse of predominantly chalk with sandstone.	_			
			with Sandstone.	_			
				_			
				=			
-							
				_	(1.40)		
					(1.40)		
3.40 - 3.60	B10			-			
3.50	D9			_			
				_			
		11/04/18	Dry	=			
				_			
			END OF EXPLORATORY HOLE	_	3.90 +2.43	3 111111	
				_			
				=			
				_			
				=			
				_			
				-	1		
				_	1		
				_	1		
					}		
roundwater Entrie	es		Remarks				
No. Depth Strike			Depth (m) Remarks		Stability Sta	able	
			0.00 - 3.90 No groundwater encountered during excavation.		Shoring No	one	
						vercast	
otes: For explanation	ry Hole Records.	All depths and	Project VPI IMMINGHAM		Trial Pit		
duced levels in met ackets in depth col	umn.		Project No. A8015-18			TP1	
Scale 1:25	opyright SOCOTE 14/	EC UK Limited AGS 08/2018 13:48:23	Carried out for AECOM		<u> </u>	Sheet 1 of 1	
				_			

Trial Pit Log

	Start I	Equipment, Methods and Remarks Dimension and Orientation			Ground Level	5.70 mOD	
Logged WH		Tracked 360 excavator.	A		Coordinates (m)	E 516559.56	
Checked TC	End [Machine excavated.	Width 0.60 m	B -> 270 (Deg)	National Grid	N 417394.29	
Approved TC	11/04/2018		Length 4.00 m				
Samples and	d Tests		Strata Description				
Depth	Type & No.	Records	Main	Detail	Depth, Level	Legend Backfill	
	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Soft dark brown slightly gravelly sandy CLAY with low cobble content and		(Thickness)		
_ _ 0.10 - 0.30	B2	-	rootlets. Gravel is subangular to subrounded fine to coarse of chalk, flint,	-	(0.20)		
- 0.20	D1	-	sandstone and debris including metal bolts, wood and concrete. Cobbles are subrounded of chalk.	-	(0.30)		
0.30	D3	-	(MADE GROUND) Firm dark brown, mottled black, slightly sandy slightly gravelly CLAY.	- -	0.30 +5.40		
- 0.30 - 0.50 -	B4		Gravel is subangular to subrounded fine to coarse of chalk, sandstone		(0.30)		
E I			and flint. Strong oil/hydrocarbon odour. (MADE GROUND)	_	(0.50)		
-			Firm brown, mottled light grey, slightly sandy slightly gravelly CLAY with	0.60-0.90 firm - light brown -	0.60 +5.10		
_			low cobble content. Gravel is subangular to subrounded fine to coarse of predominantly chalk with sandstone and flint. Cobbles are subrounded of	slightly gravelly			
-			chalk.	subangular to			
 				to coarse of chalk, sandstone			
-				and flint			
				-			
-							
- 1.30 - 1.30	HV D5	p 120kPa, r N/A		-			
- 1.30 - 1.50 -	В6	-		-			
F				_			
-				-			
-				=			
-				-			
E I							
E					(2.90)		
-				-			
– – 2.30 - 2.50	В8						
_	20						
_ 	D7	_		_			
-							
-				-			
F				_			
F				-			
-							
3.10	HV	p 120kPa, r N/A					
E				3.20-3.50 - becoming grey -			
- -				with less gravel			
- 3.40 - 3.40 - 3.50	D9 B10	-		-			
-			Light brown clayey, locally very clayey, fine to medium SAND.		3.50 +2.20	東京芸	
-				-			
- -				-			
-				-			
F	5.4				(0.90)	亚基	
- 4.00 - 4.00 - 4.20	D11 B12	-		_		海 美華	
<u> </u>					1	国际	
<u> </u>		11/04/18 Dry			1	一	
- - 4.40	HV	p 120kPa, r N/A		:	4.40 +1.30		
- 4.40 - 4.40 - 4.50	D13 B14		Firm dark brown slightly sandy slightly gravelly CLAY. Gravel is subangular to subrounded fine to medium of chalk.	-	(0.10) 4.50 +1.20		
 -			END OF EXPLORATORY HOLE	-			
 							
F					1		
F					-		
Groundwater Entries Remarks No. Depth Strike (m) Remarks Depth (m) Remarks				Stability Sta	ble		
0.00 - 4.50 No groundwater encountered during excavation.							
0.00 - 3.50 Material too friable for hand vane testing.					Shoring None		
Notes: For explanation of symbols and abbreviations Project VPI IMMINGHAM					Weather Ove	ercast	
Notes: For explanation or symbols and aborevations Project VPI IMMINGHAW see Key to Exploratory Hole Records. All depths and reduced levels in metres. Stratum thickness given in						TDO	
brackets in depth column. Project No. A8015-18						TP2	
© Copyright SOCOTEC UK Limited Scale 1:25 14/08/2018 13:48:24 Carried out for AECOM					Sheet 1 of 1		

		-					soco	
Logged WH	Start	Equipment, Methods and Re Tracked 360 excavator.	marks	Dimension and Orientation		Ground Level		1 mOD
Checked TC	10/04/2018 End	Machine excavated.		Width 0.60 m		Coordinates (m) National Grid		568.48
Approved TC	10/04/2018			Length 4.00 m	340 (Deg)	National Grid	11417	297.43
Samples an			Strata Description			i		
Depth	Type & No.	Records	Main		Detail	Depth, Level (Thickness)	Legend B	Backfill
			Soft dark brown slightly sandy slightly gravelly	CLAY with frequent		(TillCkiless)		
0.10 0.10 - 0.20	D1 B2	-	rootlets. Gravel is subangular to subrounded fi sandstone, chalk and flint.	ne to medium of	=	(0.20)		
			(MADE GROUND) Firm light brown, mottled grey, slightly sandy g	ravelly CLAY with low	0.20-0.40 light - brown, mottled -	0.20 +4.2		
			cobble content. Gravel is subrounded fine to me chalk with sandstone and mudstone. Cobbles	nedium of predominantly	orangish brown =			
- 0.50	HV	p 120kPa, r N/A	chalk with sandstone and middstone. Cobbles chalk.	are subrounded or fillit and	_			
0.50 0.50 0.50 - 0.80	D3 B4	p 120kt d, 116/K			=			
					-			
					_	-		
					=			
					_			
					-			
					- -	(2.30)		
					_			
					-			
					-			
1.80	D5				<u>-</u>			
1.80 - 2.00	B6	-			_			
					-			
					-			
					_ _			
					-			
					_			
2.50 2.50	HV D7	p 120kPa, r N/A	Firm brown CLAY.		_	2.50 +1.9	1 = = = =	
2.50 - 2.80	B8	-			=	(0.30)		
					-			
			Dark brown slightly clayey fine to coarse SANI	D.	=	2.80 +1.6		
					_			
					_			
						(0.80)		
					=			
3.40	D9	-			<u>-</u>			
3.40 - 3.60	B10	-			_			
			Soft dark brown very sandy CLAY with occasion	onal gravel size pockets of	-	3.60 +0.8	1 2 2 2	
			sand.		-			
					-			
	5.4							
4.00 4.00 - 4.20	D11 B12	-				(0.90)		
					=			
		10/04/18 Dry	,		-	-		
					_	-		
			END OF EXPLORATOR	/ HOI F	-	4.50 -0.09	,	
			2.12 6. 2.1. 26.6 1. 6.1		_			
					-	-		
					-			
					-			
					_			
oundwater Entrie	es		Remarks			A		
o. Depth Strike	(m) Remarks		Depth (m) Remarks 0.00 - 4.50 No groundwater encountered during ex	cavation.		Stability Fa 2.8	ace A and E collapsed fro 80m	mc
			g. g. z.			Shoring No	one	
							vercast	
es: For explanation Key to Explorator	ry Hole Records.	All depths and	Project VPI IMMINGHAM			Trial Pit		
uced levels in met ckets in depth colu	res. Stratum thick umn. opyright SOCOTE		Project No. A8015-18				TP3	
Scale 1:25		08/2018 13:48:24	Carried out for AECOM				Sheet 1 of 1	

		- 9						SOCOTEC
ogged WH	Start	Equipment, Methods and I	Remarks	Dimension and Orientation	_	Ground Level		4.47 mOI
necked TC	09/04/2018	Tracked 360 excavator Machine excavated pit		Width 0.60 m		Coordinates (m)		E 516556.5
proved TC	End 10/04/2018			Length 4.00 m	290 (Deg)	National Grid		N 417325.0
mples and			Strata Description	•				
Depth	Type & No.	Records	Main		Detail	Depth, Level (Thickness)	Legend	Backf
0.10 0.10 - 0.30	D1 B2	09/04/18	Dark brown slightly sandy slightly grave Gravel is subangular to subrounded finand flint. (MADE GROUND) Firm brown, mottled light grey, slightly s subangular to subrounded fine to coars sandstone, mudstone and flint.	e to medium of sandstone, chalk sandy gravelly CLAY. Gravel is	-	(0.30) 0.30 +4.17		
0.80 0.80 - 1.00	D3 B4				1.10 land drain –	(1.10)		1 또
1.40 1.40 1.40 - 1.60	HV D5 B6	p 120kPa, r N/A	Firm brown, mottled light grey, CLAY.		2.60-3.00 grey - mottled brown -	(2.00)		
3.00 3.00 - 3.20	D7 B8				3.00-3.40 brown- slightly gravelly- clayey sand Gravel is subangular fine to coarse of chalk	3.40 +1.07		
3.50 4.00 4.00 - 4.30	D9 D11 B12		Firm brown slightly sandy gravelly CLA subrounded fine to medium of chalk, flir	Y. Gravel is subangular to nt and sandstone.	-	(1.10)		
		10/04/18	END OF EXPLOR	ATORY HOLE	-	4.50 -0.03		
					-			
oundwater Entries Depth Strike	(m) Remarks Seepage		Remarks Depth (m) Remarks			Stability Stal Shoring Nor Weather ove		
es: For explanation Key to Exploratory uced levels in metro ckets in depth colur © Co cale 1:25	y Hole Records. res. Stratum thicl ımn. pyyright SOCOTE	All depths and kness given in	Project VPI IMMINGHAM Project No. A8015-18 Carried out for AECOM			Trial Pit	TP4 Sheet 1 of 1	

-	Га	l		I n		la		SOCOTEC
Logged WH	Start	Equipment, Methods and Tracked 360 excavator.	Remarks	Dimension and Orientation		Ground Level		4.31 mOD
Checked TC	10/04/2018	Machine excavated.		Width 0.60 m	l ₌	Coordinates (m)		E 516595.86
Approved TC	End 10/04/2018			Length 4.00 m	120 (Deg)	National Grid		N 417316.85
Samples an			Strata Description			1		
		Bereite			D-4-II	Depth, Level	Legend	Backfill
Depth	Type & No.	Records	Main	Illy CLAV with fraguent	Detail	(Thickness)	XXXXXXXX	
- - 0.10	D1	-	Soft dark brown slightly sandy slightly grave rootlets. Gravel is subangular to subrounded	fine to medium of	_			
- 0.10 - 0.20 -	B2		sandstone, chalk and flint. (MADE GROUND)			(0.30)		
			Firm brown, mottled grey, gravelly slightly so content. Gravel is subrounded fine to mediu	andy CLAY with low cobble	-	0.30 +4.01		
-			content. Gravel is subrounded fine to mediu mudstone. Cobbles are subangular of chalk	m of chalk, flint and	-			
- 0.50 - 0.50	HV D3	p 120kPa, r N/A						
0.50 - 0.70	B4	-			0.60-0.90 soft - light yellowish -			
					brown slightly sandy clay			
					_			
-						(1.40)		
•					1.20 land drain			1 🗷
					-			
					-			
- 1.50 1.50	HV D5	p 120kPa, r N/A						
1.50 - 1.70	B6	-				1.70 +2.61		
			Stiff bluish grey, mottled brown, CLAY.					
					-		<u> </u>	
2.00	D7	-			_			
2.00 - 2.20	B8	-				(0.80)	F	
					-		<u> </u>	
•							<u> </u>	
- - 2.50	D9					2.50 +1.81	<u> </u>	
2.50 - 2.70	B10	-	Light brown slightly clayey to clayey fine to r fine gravel of mudstone.	medium SAND. Rare angular		2.50 +1.61		
- -								
-		10/04/18			_	(0.50)		
= = =								
 -			END OF EXPLORATO	RY HOLE	+ -	3.00 +1.31	2430,00,0	
-					=			
-								
<u>-</u>					-			
- -								
-					-			
- -								
-					-			
-								
					_			
- - -								
• = •					-			
-					-			
-								
-					_			
-								
Groundwater Entri No. Depth Strike	ies e (m) Remarks		Remarks Depth (m) Remarks			Stability Fac	ces A and C c	ollapsed
1 1.20	Seepage		sohm (m) vemares					
						Shoring No. Weather Over	ne ercast	
lotes: For explanation	on of symbols and	abbreviations	Project VPI IMMINGHAM			Trial Pit	o.oudt	
ee Key to Explorato educed levels in me	ory Hole Records. A etres. Stratum thick	All depths and kness given in					TP5	
rackets in depth col	lumn. Copyright SOCOTE	EC UK Limited AGS	Project No. A8015-18 Carried out for AECOM					
Scale 1:25	14/	08/2018 13:48:24	Carried out for AECOM			I	Sheet 1 of 1	

Logged WH	Start	Equipment, Methods and F	Remarks	Dimension and Orientation		Ground Level		5.43 mOD
Checked TC	10/04/2018	Tracked 360 excavator. Machine excavated.		Width 0.60 m	1	Coordinates (m)		E 516601.66
Approved TC	End			Length 4.00 m	B 240 (Deg)	National Grid		N 417379.51
	10/04/2018			C C				
Samples an	d Tests		Strata Description					
Depth	Type & No.	Records		Main	Detail	Depth, Level (Thickness)	Legend	Backfill
- 0.10 - 0.10 - 0.30 -	D1 B2		Gravel is subangular fine to coars Cobbles are subrounded of chalk. (MADE GROUND)		-	(0.30) 0.30 +5.13		
- 0.40 - 0.60 - 0.50 	B4 D3		CLAY. Gravel is subrounded fine t (MADE GROUND) Firm light brown slightly sandy slig subrounded fine to coarse of flint,	ahtly gravelly CLAY. Gravel is	- 0.60-1.20 brown - mottled grey - gravelly clay -	(0.30)		
	D5 B6				1.20 land drain - - - - - - - -			
- 1.50 - 1.50 	HV	p 120kPa, r N/A			-			又
2.00 	HV	p 120kPa, r N/A			-	(3.50)		
2.50 2.50 - 3.00	D7 B8							
4.10 - 4.30 - 4.30 - 4.30 - 4.30 - 4.30 - 4.30	D9 B10	10/04/18	Firm dark brown sandy CLAY with sand.	occasional gravel size pockets of	-	(0.50)		
- - - - - - -			END OF EXP	PLORATORY HOLE	- - - - - -	4.60 +0.83	3	188398888888888888888888888888888888888
Groundwater Entric No. Depth Strike 1 1.90 Notes: For explanation	e (m) Remarks Seepage	abbreviations	Remarks Depth (m) Remarks Project VPI IMMINGHAM			Stability Sta Shoring Nor Weather Ove		
see Key to Explorato reduced levels in me brackets in depth col	ry Hole Records. A tres. Stratum thick lumn. copyright SOCOTE	All depths and eness given in					TP6 Sheet 1 of 1	

		_						SOCOTEC
	Start	Equipment, Methods and I	Remarks	ension and Orientation		Ground Level		5.29 mOD
Logged WH	10/04/2018	Tracked 360 excavator. Machine excavated.		Α Α		Coordinates (m)		E 516616.25
Checked TC	End	iviaci ii ie excavateu.	Widt	ath 400 m	B 140 (Deg)	National Grid		N 417423.18
pproved TC	10/04/2018		Leng	giii 4.00 iii				
amples an	d Tests		Strata Description					
Depth	Type & No.	Records	Main		Detail	Depth, Level (Thickness)	Legend	Backfill
			Soft brown sandy slightly gravelly CLAY with freque	ent rootlets. Gravel is	_		X//XX	
0.10 - 0.30	B2	-	subrounded fine to medium of chalk. (TOPSOIL)		_	(0.30)		
0.20	D1	-	(131 3312)		_			
			Soft brown slightly gravelly sandy CLAY. Gravel is s	subangular to	1 =	0.30 +4.99		
			subrounded fine to medium of chalk sandstone and	I flint.	=			
					_			
					=			
					=			
					_			
					_			
					1.10 soft orangish -			1 목
					1.10 soft orangish — brown sandy clay — 1.10 land drain —			•
1.30	HV	p 120kPa, r N/A			_			
1.30 1.30 - 1.60	D3 B4				=			
					_			
					_	(2.60)		
					=			
					=			
					_			
					_			
					_			
					_			
					_			
					_			
					_			
					_			
					_			
					_			
			Brown clayey fine to coarse SAND.		1 =	2.90 +2.39	' = =	
					=			
					_	(0.90)		
3.50	D5				_			
3.50 - 3.80	B6	-			_			
					_			
			Firm dad, mariah harrow Ol AV		_	3.80 +1.49	, — —	
			Firm dark greyish brown CLAY.		_			
4.00	D7	10/04/18			_	(0.40)		
4.00 - 4.20	B8	-			=			
			END OF EXPLORATORY HO	LE		4.20 +1.09		
			2.15 6. 27.1 25.1 1.1 6.1 1.1 6]			
					_			
					_			
					=			
					_			
					_			
					=			
							•	
oundwater Entrie o. Depth Strike	(m) Remarks		Remarks Depth (m) Remarks			Stability Fa	ces A and C co	llapsed from
1.10	Seepage		1				one	
							vercast	
es: For explanation	n of symbols and	d abbreviations	Project VPI IMMINGHAM			Trial Pit		
Key to Explorator uced levels in met	y Hole Records. res. Stratum thic	All depths and kness given in					TP7	
ckets in depth col	umn. opyright SOCOTI		Project No. A8015-18				161	

		3						SOCOTEC
Logged WH	Start	Equipment, Methods and Re	emarks	Dimension and Orientation	_	Ground Level		4.60 mOD
Logged WH Checked TC	10/04/2018	Tracked 360 excavator. Machine excavated.		Width 0.60 m		Coordinates (r	n)	E 516678.60
Approved TC	End				35 (Deg)	National Grid		N 556494.03
	10/04/2018		lou o book	-		ļ		
Samples an			Strata Description			Depth, Leve	l Legend	Backfill
Depth	Type & No.	Records	Main		Detail	(Thickness)	Legend	Dackiiii
- - 0.10	D1	=	Soft dark brown silty CLAY with rootlets. (TOPSOIL)		-	(0.20)		
- 0.10 - 0.20 - 0.20	B2 HV	p 120kPa, r N/A	Light orangish brown slightly sandy gravelly (CLAY Gravel is subrounded	-	0.20 +4	.40	
0.20 0.20 - 0.50	D3 B4	-	fine to coarse of sandstone and chalk. (MADE GROUND)	SEATT. Graver to subrounded		(0.30)		
_			(MADE GROUND)		-	(0.30)		
- =			Firm brown, mottled light grey, slightly sandy		-	0.50 +4	.10	
-			cobble content. Gravel is subrounded to rour and sandstone. Cobbles are subrounded of c					
- - 0.80	HV	p 120kPa, r N/A			-			
- 0.80 - 0.80 - 1.00	D5 B6	-			-	-		
- -								
_					-			
- -					-	-		
= - -					-			
_					_			
- -					-	-		
=					-	(2.50)		
_					-	(====,		
0.00	D7				-			
	D7 B8	-			-			
_					-			
- -					-			
_					_			
<u> </u>					-	-		
_								
_					-			
<u> </u>					-	-		
_			Soft light grey, mottled brown, CLAY with rare	e subrounded fine to medium		3.00 +1	.60	
- 3.10 - 3.10 - 3.30	D9 B10	-	gravel of chalk.		-	(0.30)	F_=_=	
-					3.20-3.90 firm - dark brown clay -		F_=_=	
- -			Dark brown clayey fine to medium SAND with pockets of sandy clay.	n occasional gravel size	-	3.30 +1	.30	
- -			position of carray stay.		_			
- -					-	(0.60)		
- - 3.70 - 3.90	B12	-			_			
3.80	D11	-			-			
-	104	- 400kD N/A	Firm brown slightly sandy silty CLAY.		-	3.90 +0	.70 × ×	
- 4.00 - 4.00 - 4.00 - 4.50	HV D13 B14	p 100kPa, r N/A			_		$=$ \times $\hat{\Box}$	
4.00 - 4.50 - -	D14				-	(0.60)	\times	
_		10/04/18 Dry	у		_		\sim	
_					_		$ \times$ \times \times \times	
_			END OF EXPLORATOR	RY HOLE	_	4.50 +0	.10	
- -					-			
<u>-</u>					-	-		
						-		
Groundwater Entri No. Depth Strike			Remarks Depth (m) Remarks			Stability S	Stable	
			0.00 - 4.50 No groundwater encountered during	excavation.		Shoring N	None	
						_	Overcast	
Notes: For explanation	on of symbols and	l abbreviations	Project VPI IMMINGHAM			Trial Pit		
see Key to Explorato reduced levels in me brackets in depth col	tres. Stratum thick	kness given in	Project No. A8015-18				TP8	
© C Scale 1:25	Copyright SOCOTE	EC UK Limited AGS 08/2018 13:48:25	Carried out for AECOM				Sheet 1 of 1	
	14/		_					

Irial		•					SOCOTE
	Start	Equipment, Methods and	Remarks Dimension and Orientation	_	Ground Level		5.71 mC
ogged WH	10/04/2018	Tracked 360 excavator.	A		Coordinates (m)	E 516677.
ecked TC	End	Machine excavated.	Width 0.60 m	B - 310 (Deg)	National Grid		N 417410.
roved TC	10/04/2018		Length 4.00 m				
mples an	d Tests		Strata Description				
Depth	Type & No.	Records	Main	Detail	Depth, Level (Thickness)	Legend	Backt
0.40	D.1		Soft dark brown slightly gravelly slightly silty CLAY with frequent rootlets.	-	(0.00)		
0.10 0.10 - 0.20	D1 B2		Gravel is angular to subrounded fine to medium of sandstone and flint. (TOPSOIL)	-	(0.20)	. KAKA	
0.00	D0		Light yellowish brown very sandy clayey angular to subangular fine to coarse GRAVEL of limestone and sandstone.	7 :	0.20 +5.5	'	
0.30 0.30 - 0.40	D3 B4		(MADE GROUND)				
				-			
							1 목
0.80	D5						
0.80 - 1.00	В6	-		-	(1.40)		
				-			
				-	_		
1.60 1.60	HV D7	p 120kPa, r N/A	Stiff dark orangish brown, mottled dark brown, CLAY with rare subangular	-	1.60 +4.1	1 *************************************	
1.60 - 1.80	B8		fine gravel of flint.				
				-	(0.40)		
						F_=_	
2.00 2.00 - 2.20	D9 B10		Stiff light brown, mottled grey, slightly gravelly sandy CLAY. Gravel is	1 -	2.00 +3.7	1	
			subangular fine to coarse of chalk.	-			
				-			
				-			
					(2.20)		
3.20	D11						
3.20 - 3.40	B12	-					
				-			
				_			
				-			
				-			
		10/04/18		_			
				-			
			END OF EXPLORATORY HOLE	-	4.20 +1.5	1	
				-			
ndwater Entrie			Remarks		Stability Fa	ices A and C co	llanced from
Depth Strike 0.70	(m) Remarks Seepage		Depth (m) Remarks		0.3	20 to 4.20m	iiapseu iioi
	. 5				Shoring No	one	
					Weather O	vercast	
y to Explorator	n of symbols and y Hole Records.	All depths and	Project VPI IMMINGHAM		Trial Pit		
d levels in met ts in depth colu	res. Stratum thick	kness given in	Project No. A8015-18			TP9	
	opyright SOCOTE	EC UK Limited AGS	Carried out for AECOM			Sheet 1 of 1	

Carried out for AECOM

				_			SOCOTEC
Logged WH	Start	Equipment, Methods and I	Remarks Dimension and Orientation		Ground Level		4.70 mOD
	06/04/2018	Tracked 360 excavator. Machine excavated.	A A		Coordinates (m)	E 516725.56
Checked TC	End	iviacrime excavateu.	Width 0.60 m	B 230 (Deg)	National Grid		N 417441.68
Approved TC	06/04/2018		Length 3.00 m				
Samples an			Strata Description		1		
					Depth, Level	Legend	Backfill
Depth	Type & No.	Records	Main	Detail	(Thickness)		
- - 0.10 - 0.40 -	B2	-	Soft light brown, mottled greyish brown, slightly sandy slightly gravelly CLAY with frequent rootlets. Gravel is subangular to rounded of chalk and mudstone. (TOPSOIL)	-	(0.40)		
- 0.30	D1	-		-	-		
- 0.40	HV	p 120kPa, r N/A	Firm dark greyish brown, mottled dark grey, slightly sandy CLAY with	-	0.40 +4.3	0	
- 0.40 - 0.40 - 0.60	D3 B4		frequent wood and plant material.	_		平耳道	
- -				-	(0.40)		
-				_			
- - 0.80	HV	p 120kPa, r N/A			0.80 +3.9	,	
- 0.90	D5	, , , , , , , , , , , , , , , , , , , ,	Firm light orangish brown, mottled light grey, slightly sandy gravelly CLAY. Gravel is subangular to subrounded of predominantly chalk with	_			
0.90 - 1.20	B6	-	mudstone and flint.	1.00-1.20 light—			1 모
-				yellowish brown -			
_				sand pockets			
_ _				-			
- =				-			
-				-			
-				_			
_							
<u>-</u> -				_			
-				-			
-				-	(2.20)		
<u>-</u>							
_ _							
- 2.20	D7			-	-		
- 2.20 - 2.20 - 2.70	D7 B8	-		-	-		
-							
-				-			
_ -				_	_		
_				-	-		
- -				-	1		
-							
- -				-			
- 3.00	D9				3.00 +1.7		
- 3.00	Da		Firm dark brown CLAY with rare subrounded fine to medium gravel of mudstone.	-	3.00 +1.7	° [- <u>-</u>]	
-			mudstone.	-	1		
- 3.20 - 3.70 -	B10	-					
- -				-			
<u>-</u>					_		
_				_	(1.00)		
-					1		
= =				-			
_ _				-	1		
- -				-	_		
					4.00 +0.7	<u></u>	
_			Greyish brown slightly gravelly clayey fine to coarse SAND. Gravel is subrounded fine to medium of mudstone.		4.00 +0.7	٠ 🗔	
- -			subrounded line to medium of mudstone.	-	1		
- 4.20 - 4.20 - 4.50	D11 B12				(0.50)		
-		06/04/18			1 ' '		
_				-		7	
			END OF EXPLORATORY HOLE		4.50 +0.2	0	
 -			END OF EXPEDITATION THOSE	-	1		
- -				-			
-							
_				-			
- =				-			
Groundwater Entrie			Remarks		Stability St	able	
No. Depth Strike 1 1.00	(m) Remarks Seepage		Depth (m) Remarks				
	F-3-				Shoring No	one	
					Weather O	vercast	
Notes: For explanation	on of symbols and	abbreviations	Project VPI IMMINGHAM		Trial Pit		
see Key to Explorator reduced levels in met	ry Hole Records. A tres. Stratum thick	ness given in				TP10	
brackets in depth colu	umn. opvright SOCOTE		Project No. A8015-18		1	1710	

Trial Dit Loa

	PIL L						SOCOTEC
Logged WH		Equipment, Methods and	Remarks Dimension and Orie	ntation	Ground Level		6.44 mOI
Checked TC		Tracked 360 excavator. Machine excavated.	Width 0.60 m	A	Coordinates (m))	E 516698.3
pproved TC	End		Length 4.00 m	D B => 220 (Deg)	National Grid		N 417407.3
ppione	09/04/2018			C	4		
amples and	d Tests		Strata Description				
Depth	Type & No.	Records	Main	Detail	Depth, Level (Thickness)	Legend	Backfil
0.40	5.4		Soft brown slightly sandy slightly gravelly CLAY. Gravel is angular rounded fine to coarse of chalk, brick, sandstone and concrete.	r to			
0.10 0.10 - 0.30	D1 B2	-	(MADE GROUND)	-			
				-	(0.50)		
0.50	HV	p 120kPa, r N/A		0.50 concrete	0.50 +5.9	4	
0.50 0.50 0.50 - 0.70	D3 B4	p izoki a, i iviA	Firm brown, mottled light grey, slightly sandy gravelly CLAY. Grav subangular to subrounded fine to coarse of chalk, mudstone, flint	el IS block wider than -	0.00		
0.30 - 0.70	54		sandstone.	action of trace B			
				-			
				=	(1.60)		
				1.40 low cobble			
				content. Cobbles are subrounded			1 목
				of chalk			
1.70 1.70	D5 D6	-		-			
1.70	D6			-			
				_			
			Firm dark greyish brown, mottled dark grey, slightly gravelly slight		2.10 +4.3	4	
2.20 2.20	HV D7	p 100kPa, r N/A	sandy to sandy CLAY. Gravel is subrounded fine to coarse of san	dstone.	(0.30)		
2.20 - 2.30	B8	-					
			Firm light brown, mottled light grey, locally light orange brown, slight		2.40 +4.0	4	
2.50 2.50 - 2.70	D9 B10	-	gravelly CLAY. Gravel is subrounded to rounded fine to coarse of	chalk. –			
				-			
				-			
					(1.00)		
					(1.00)		
				-			
3.40	D11	-	Chiff light brown mothled group lightly conducting billy group lightly	/ Cravel	3.40 +3.0	4	
3.50 - 3.70	B12	-	Stiff light brown, mottled grey slightly sandy slightly gravelly CLAN is subrounded fine to coarse of sandstone and chalk.	r. Graver			
				=			
				=			
					(1.10)		
				_	(1.10)		
				4.10 locally - slightly sandy -			
				gravelly clay			
		09/04/18					
				-			
			END OF EXPLORATORY HOLE	-	4.50 +1.9	4	800810818018
				-			
				-			
oundwater Entrie	es		Remarks		a		-
Depth Strike 1.50	(m) Remarks Seepage		Depth (m) Remarks		Stability St	able	
					Shoring No	one	
					Weather O	vercast	
Key to Explorator	n of symbols and ry Hole Records. A	Ill depths and	Project VPI IMMINGHAM		Trial Pit		
uced levels in met ckets in depth colu	res. Stratum thicks	ness given in C UK Limited AGS	Project No. A8015-18			TT1	
		C UK Limited AGS			1		

quipment, Methods and Remarks Dimension and Orientation Ground Level WH Logged Coordinates (m) E 516764.39 TC Checked 0.60 m Machine excavated. Top strata too friable to do hand vane. Width National Grid N 417439.42 End 160 (Deg) TC Length 4.00 m Approved Samples and Tests Strata Description Depth, Level (Thickness) Backfill Legend Type & No. Records Detail Soft light brown slightly sandy slightly gravelly CLAY. Gravel is subangular to subrounded of flint and sandstone. Occasional rootlets. (MADE GROUND) 0.25 D1 (3.00) 2.00 2.00 2.00 - 2.15 HV D5 B6 p 70kPa, r N/A HV D7 B8 p 120kPa, r N/A 3.00 Dark greyish brown, mottled light brown, CLAY with rare angular to subrounded fine to medium gravel of various lithologies including flint and (0.25) 3.25 3.25 3.25 - 3.50 3.25 Firm light brown slightly gravelly sandy CLAY. Gravel is subangular to subrounded fine to medium of flint and mudstone. 06/04/18 3.50 END OF EXPLORATORY HOLE Stability Stable No. Depth Strike (m) Remarks Depth (m) 0.00 - 3.50 No groundwater encountered during excavation. Shoring None Weather Overcast Notes: For explanation of symbols and abbreviations see Key to Exploratory Hole Records. All depths and reduced levels in metres. Stratum thickness given in brackets in depth column.

Copyright SOCOTEC UK Limited Scale 1:25 14/08/2018 13:51:53 VPI IMMINGHAM Project Trial Pit TT2 Project No. A8015-18 **AECOM**

Trial Dit Loa

mai	TIL L	.og					SOCOTEC
	Start	Equipment, Methods and F	temarks Dimension and Oriental	tion	Ground Level		5.40 mOD
Logged WH	05/04/2018	Tracked 360 excavator		A	Coordinates (m)		E 516764.82
Checked TC	End	Machine excavated pit	Width 0.60 m	B - 230 (Deg)	National Grid		N 417461.85
Approved TC	06/04/2018		Length 4.00 m	С			
Samples and	d Tests		Strata Description				
Depth	Type & No.	Records	Main	Detail	Depth, Level (Thickness)	Legend	Backfill
		05/04/18	Brown, locally light brown, slightly sandy CLAY with low cobble conte Cobbles are subrounded of flint and sandstone.	ent.		××	
_		03/04/16	Cobbles are subrounded of limit and samustone.	-		××	
- - 0.30	D1			-		××	
- 0.30 - 0.60 -	B2	-		=		×_ ×	
_				_		<u> </u>	
_				=		$\boxed{}$ \times $\stackrel{\wedge}{}$	
E					(1.40)	× ×	
_ _						^—x	
-				=		<u>×</u> ×	
-				_		× –×	
E					}	×x	
_ _ 1.30	D3			-		××	
- 1.30 - 1.60 -	B4	-	Dark greyish brown silty CLAY with occasional wood fragments. Slig	-	1.40 +4.00	×	
_			organic odour.	-		×	
E						<u>×</u> ×	
<u>-</u>				-	(0.60)	<u>×x</u>	
_				=		××	
F					0.00	××	
	HV	p 120kPa, r N/A	Firm light brown, mottled light grey, slightly sandy slightly gravelly CL Gravel is subangular to subrounded fine to medium of sandstone, ch		2.00 +3.40		
- 2.10 - 2.10 - 2.10 - 2.50	D5 B6	p 120ki a, i N/A	and quartzite.	-			
- -	50	06/04/18		-	(0.50)		
-							
			END OF EXPLORATORY HOLE		2.50 +2.90		
-				-			
-				-			
_							
_							
-							
Ę.				-			
Ē							
_				-			
-				-			
_							
				-			
_				-			
_							
= = =				-			
_				-			
<u>-</u>				-			
				_			
- -				-			
-				-			
Ē							
_ _				-			
-							
Groundwater Entrie			Remarks		Ctability C	blo	
No. Depth Strike	(m) Remarks		Depth (m) Remarks 0.00 - 2.00 Material too friable for hand vane testing.		Stability Sta	DIE	
			0.00 - 2.50 No groundwater encountered during excavation.		Shoring Nor		
Notes: For overland!	n of eymbols as i	ahhraviations	Project VPI IMMINGHAM		Weather ove	ercast	
Notes: For explanatio see Key to Explorator reduced levels in met	v Hole Records, A	All depths and	Project VPI IMMINGHAM		iliai rit	TT ^	
brackets in depth colu © Co	imn. opyright SOCOTE		Project No. A8015-18			TT3	
Scale 1:25		18/2018 13:51:54	Carried out for AECOM		I	Sheet 1 of 1	

APPENDIX C INSTRUMENTATION AND MONITORING

Installation Details Table C1

Installation Details

	1					1	1	
Instrument Reference	Instrument Type (See Notes)	Installation Date, dd/mm/yyyy	Pipe Diameter, mm	Instrument Base, mbgl	Response Zone Range, mbgl	Pipe Top Details	Headworks	Remarks
BH1 (1)	SP	11/04/2018	50	14.80	12.60 to 15.00	Gas tap	Raised cover	
BH2 (1)	SP	16/04/2018	50	15.10	14.00 to 15.20	Gas tap	Flush cover	
BH3 (1)	SP	18/04/2018	50	28.60	26.60 to 28.60	Gas tap	Flush cover	
BH4 (1)	SP	20/04/2018	50	34.60	28.60 to 34.60	Gas tap	Flush cover	
BH5 (1)	SP	19/04/2018	50	18.50	17.50 to 18.50	Gas tap	Flush cover	
BH6 (1)	SP	16/04/2018	50	34.50	25.50 to 34.50	Gas tap	Raised cover	
WS1 (1)	SP	06/04/2018	50	1.40	1.00 to 1.40	Gas tap	Raised covers	
WS2 (1)	SP	10/04/2018	50	1.20	0.70 to 1.20	Gas tap	Raised cover	
WS3 (1)	SP	10/04/2018	50	3.50	2.50 to 3.50	Gas tap	Raised cover	
WS4 (1)	SP	06/04/2018	50	2.30	1.30 to 2.30	Gas tap	Raised cover	
WS5 (1)	SP	10/04/2018	50	4.30	3.30 to 4.30	Gas tap	Raised cover	
WS6 (1)	SP	11/04/2018	50	3.70	3.10 to 3.70	Gas tap	Raised cover	
WS7 (1)	SP	11/04/2018	50	3.60	3.10 to 3.60	Gas tap	Raised cover	
WS8 (1)	SP	11/04/2018	50	4.10	3.60 to 4.10	Gas tap	Raised cover	

APPENDIX D GEOTECHNICAL LABORATORY TEST RESULTS

Index Properties – Summary of Results	INDX 1 to 3
Particle Size Distribution Analyses	PSD 1 to 24
Unconsolidated Undrained Triaxial Compression Tests – Summary of Results	UUSUM
Consolidated Undrained Triaxial Compression Tests with Measurement of Pore Water Pressure	CUM 1 to 6 (3 sheets per test)
One Dimensional Consolidation Test	OED 1 to 8
Determination of Consolidation Properties Using a Hydraulic Cell	HC 1 and 3 (2 sheets per test)
Dry Density / Moisture Content Relationship (Light)	COMPL 1 to 7
Dry Density / Moisture Content Relationship (Heavy)	COMPH 1 to 9
California Bearing Ratio	CBR 1 to 11
Chemical Tests	EFS/187041 EFS/187043 EFS/187204 EFS/187902

INDEX PROPERTIES - SUMMARY OF RESULTS

	Sample					р	p_{d}	W	< 425	W_L	W_P	lР	ps	
Hole No.		Depti	h (m)	t mo	Soil Description				μm sieve					Remarks
	No.	from	to	type		Mg	/m3	%	%	%	%		Mg/m3	
BH1	4	0.50	0.70	В	Greyish brown slightly sandy slightly gravelly silty CLAY.			27	91	54 a	26	28		
BH1	8	2.00	2.45	D	Brown slightly sandy slightly gravelly CLAY.			14	92	43 a	19	24		
BH1	9	2.50	3.00	В	Brown slightly sandy slightly gravelly silty CLAY with chalk fragments.								2.71-p	
BH1	17	6.50	6.95	D	Brown slightly sandy slightly gravelly CLAY.			13	82	33 a	15	18		
BH1	22	9.50	9.95	D	Brown slightly sandy slightly gravelly CLAY.			14	88	29 a	15	14		
BH1	27	13.00	13.50	В	Brown slightly gravelly sandy silty CLAY.								2.68-p	
BH1	35	17.00	17.45	UT	Very stiff greyish brown slightly sandy slightly gravelly CLAY. Gravel is mainly chalk.								2.72-p	
BH1	36	17.45	17.60	D	Dark grey sandy gravelly CLAY.			13	82	30 a	15	15		
BH1	40	20.40	20.50	D	Grey slightly sandy gravelly CLAY.			22						
BH1	43	22.50	22.70	D	Grey slightly sandy slightly gravelly CLAY. Gravel contains chalk fragments.			13						
BH1	46	25.00	25.22	D	Grey slightly gravelly sandy CLAY. Gravel is chalk fragments.			13	89	27 a	15	12		
BH2	2	0.30	0.50	В	Brown slightly sandy gravelly CLAY.			20	56	44 a	22	22		
BH2	5	1.00		D	Brown slightly sandy slightly gravelly CLAY.			22						
BH2	8	1.65	1.80	D	Brown slightly sandy slightly gravelly CLAY.			24	91	42 a	19	23		
BH2	15	3.30	3.75	UT	Firm laminated brown slightly sandy CLAY.			23	100	47 a	22	25		
BH2	28	5.10	5.55	UT	Firm dark brown slightly sandy slightly gravelly CLAY.			16	83	32 a	17	15	2.70-р	
BH2	34	7.10	7.55	D	Brown slightly sandy slightly gravelly CLAY.			18	88	33 a	14	19		
BH2	40	9.50	9.95	UT	Firm bown slightly sandy slightly gravelly silty CLAY. Gravel is chalk fragments.			14	87	32 a	13	19		
BH2	51	13.10	13.55	В	Brown slightly sandy slightly gravelly silty CLAY. Gravel is chalk.			16	89	31 a	15	16		
BH2	63	18.50	19.00	В	Greenish grey slightly sandy SILT.			22	100	23 a	NP			
BH3	3	1.65	2.00	В	Brown slightly sandy slightly gravelly silty CLAY with chalk fragments.			28	95	37 a	21	16	2.71-p	
BH3	8	4.00	4.45	D	Brown slightly gravelly very sandy silty CLAY.			21						
ВН3	12	5.65	6.00	В	Brown slightly sandy slightly gravelly CLAY.			18	85	32 a	15	17	2.70-р	
BH3	19	9.00	9.45	UT	Firm greyish brown slightly sandy slightly gravelly silty CLAY. Gravel contains chalk fragments.			17						
ВН3	27	12.00	12.45	UT	Firm brown slightly sandy slightly gravelly CLAY.			17						
BH3	32	13.50	13.95	D	Light brown silty SAND.			25						
ВН3	45	23.00	24.00	В	Greenish grey CLAY with chalk fragments.			15						
BH4	1	0.50	1.20	В	Brown slightly sandy slightly gravelly CLAY.			24	95	43 a	21	22		
BH4	7	3.10	3.55	UT	Brown slightly sandy SILT.			21						
BH4	10	4.50	4.95	UT	Firm to stiff greyish brown slightly sandy slightly gravelly CLAY.								2.70-р	
BH4	14	6.00	6.45	UT	Firm brown slightly sandy slightly gravelly CLAY.			14	89	33 a	14	19		
	1	ı					ı		1					

General notes: All above tests carried out to BS1377: 1990 unless annotated otherwise. See Remarks for further details

WL Liquid limit <425um preparation Key: p bulk density, linear WP Plastic limit ps particle density pd dry density a 4 point cone test NP non - plastic n from natural soil -g = gas jar

b 1 point cone test s sieved specimen IP Plasticity Index w moisture content -p = small pyknometer

* test carried out to BS EN ISO 17892-1 2014

QA Ref SLR 1 Rev 2.91 Mar 17	
	SOCOTEC

	Project No	A8015-18	Figure
	Project Name	VPI IMMINGHAM	INDX
100000	Opinions and interpretation	Printed: 31/07/2018 12:05	

INDEX PROPERTIES - SUMMARY OF RESULTS

	Sample					р	p_{d}	W	< 425	W_L	W _P	lР	p_s	
Hole No.	No.	Dept	h (m)	type	Soil Description				μm sieve					Remarks
	INO.	from	to	type		Mg	/m3	%	%	%	%		Mg/m3	
BH4	22	9.00	9.45	UT	Firm to stiff dark brown slightly sandy slightly gravelly CLAY. Gravel contains chalk fragments.			15	89	32 a	15	17		
BH4	27	11.15	11.60	D	Brown slightly sandy slightly gravelly CLAY.			12						
BH4	34	15.50	16.00	В	Light brown gravelly SAND.			8.6						
BH4	42	22.00	22.50	В	Grey slightly sandy slightly gravelly CLAY. Gravel is chalk fragments.			17						
BH5	3	0.50		D	Brown slightly sandy slightly gravelly CLAY.			16	96	39 a	19	20		
BH5	11	2.30	2.75	UT	Very stiff brown slightly sandy slightly gravelly CLAY. Gravel is chalk fragments.			16					2.71-p	
BH5	20	4.50	4.95	UT	Firm laminated brown slightly gravelly sandy CLAY.			17	88	27 a	16	11		
BH5	27	8.00	8.45	UT	Firm greyish brown slightly sandy slightly gravelly CLAY. Gravel contains chalk.			16	82	30 a	14	16		
BH5	35	11.00	11.45	UT	Firm brown slightly sandy slightly gravelly CLAY.			16						
BH5	42	13.00		D	Soft brown slightly gravelly, slightly sandy CLAY.			15						
BH5	51	17.00	17.36	D	Light grey sandy gravelly CLAY.			1.7						
BH5	58	20.00	20.28	В	Greenish grey CLAY with chalk fragments.			4.9						
BH6	1	0.00	0.30	В	Brown very sandy clayey GRAVEL.			20						
BH6	6	2.00	2.45	UT	Very stiff brown mottled grey slightly sandy slightly gravelly CLAY. Gravel contains chalk.								2.71-p	
BH6	9	3.50	4.00	В	Brown slightly silty CLAY.			27						
BH6	14	6.00	6.45	UT	Firm to stiff greyish brown slightly gravelly sandy CLAY. Gravel contains chalk.			15	90	29 a	18	11		
BH6	21	10.00	10.50	В				17						
BH6	25	13.00	13.50	В	Brown slightly sandy slightly gravelly CLAY.			16					2.65-g	
BH6	28	15.00	15.45	D	Light brown sandy gravelly CLAY.			16						
BH6	35	19.50	21.00	В	Greyish brown gravelly CLAY. Gravel is chalk fragments.			17						
TP1	4	0.70	0.90	В	Brown slightly sandy CLAY with occasional chalk fragments.			26						
TP1	8	2.00	2.20	В	Brown slightly sandy slightly gravelly CLAY.			20	96	47 a	19	28	2.69-p	
TP10	8	2.20	2.70	В	Brown slightly sandy slightly gravelly CLAY.			22	95	41 a	19	22		
TP10	12	4.20	4.50	В	Brown SAND.			21						
TP2	1	0.20		D	Dark brown slightly sandy slightly gravelly CLAY.			25						
TP2	8	2.30	2.50	В	Brown slightly sandy slightly gravelly CLAY.			11	94	45 a	19	26		
TP2	12	4.00	4.20	В	Brown slightly gravelly silty SAND.			25					2.72-p	
TP2	13	4.40		D	Brownish grey slightly gravelly sandy CLAY.			16	88	32 a	17	15		
TP3	10	3.40	3.60	В	Light brown SAND.			25					2.69-р	
TP3	12	4.00	4.20	В	Brown very clayey SAND with chalk fragments.			21	92	23 a	14	9		
TP4	4	0.80	1.00	В	Brown slightly sandy CLAY with chalk fragments.			17	94	42 a	17	25		
	<u>I</u>	1		<u> </u>			1		1					

General notes: All above tests carried out to BS1377: 1990 unless annotated otherwise. See Remarks for further details

WL Liquid limit <425um preparation Key: p bulk density, linear WP Plastic limit ps particle density pd dry density a 4 point cone test NP non - plastic n from natural soil -g = gas jar

b 1 point cone test s sieved specimen IP Plasticity Index w moisture content -p = small pyknometer

* test carried out to BS EN ISO 17892-1 2014

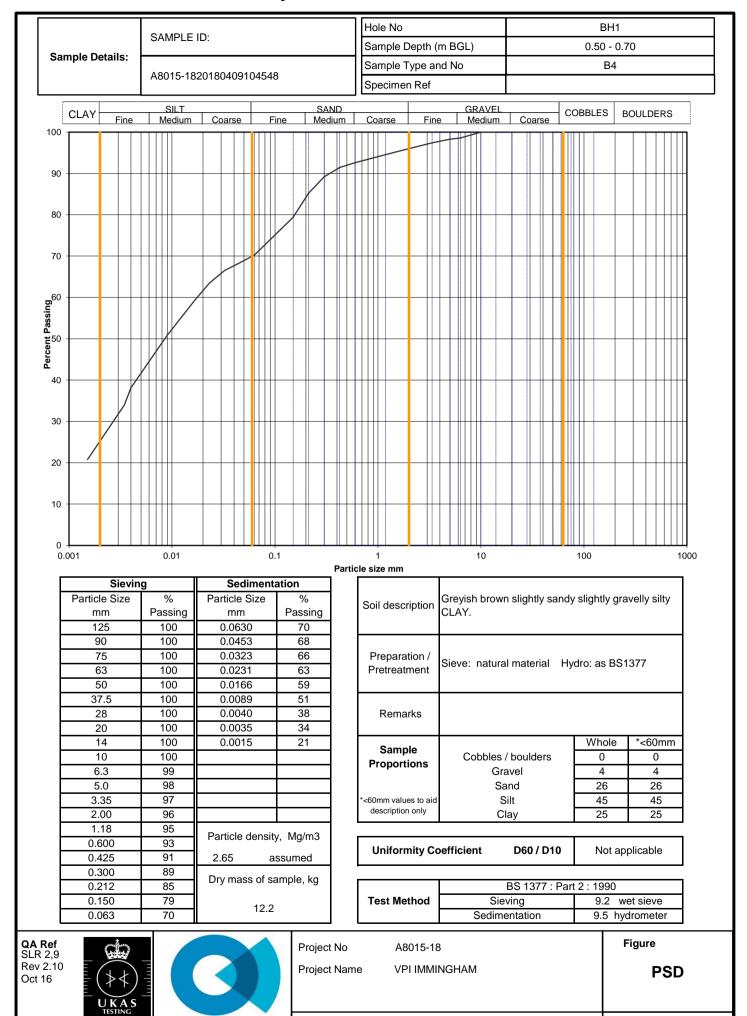
QA Ref SLR 1 Rev 2.91 Mar 17	
	SOCOTEC

	Project No	A8015-18	Figure
	Project Name	VPI IMMINGHAM	INDX
100000	Opinions and interpretatio accreditation. © Copyright	Printed: 31/07/2018 12:05	

INDEX PROPERTIES - SUMMARY OF RESULTS

	Sample					р	p_{d}	W	< 425	W_L	W _P	lР	ps		
Hole No.	No	No.	Depti	h (m)	typo	Soil Description				µm sieve					Remarks
	INO.	from	to	type		Mg	/m3	%	%	%	%		Mg/m3		
TP4	12	4.00	4.30	В	Brown slightly sandy slightly gravelly CLAY.			18	93	39 a	17	22			
TP5	6	1.50	1.70	В	Brown slightly sandy CLAY with chalk fragments.			24	98	50 a	23	27			
TP5	10	2.50	2.70	В	Brown silty SAND.			24					2.65-p		
TP6	1	0.10		D	Dark brown slightly sandy slightly gravelly CLAY.			20							
TP6	8	2.50	3.00	В	Brown slightly sandy slightly gravelly CLAY.			25	95	41 a	17	24			
TP7	5	3.50		D	Brown slightly gravelly SAND.			23							
TP8	4	0.20	0.50	В	Brown slightly sandy slightly gravelly silty CLAY.			20	94	48 a	19	29			
TP8	8	2.00	2.20	В	Brown slightly sandy slightly gravelly CLAY.			24	94	46 a	18	28	2.72-p		
TP8	11	3.80		D	Brown slightly gravelly silty SAND.			23							
TP8	14	4.00	4.50	В	Brown SAND.			23							
TP9	4	0.30	0.40	В	Light brown slightly sandy slightly gravelly CLAY.			16							
TP9	12	3.20	3.40	В	Brown slightly sandy slightly gravelly CLAY. Gravel is chalk.			19	95	44 a	21	23			
TT1	1	0.10		D	Brown slightly sandy slightly gravelly CLAY.			22	82	44 a	18	26			
TT1	9	2.50		D	Brown slightly sandy slightly gravelly CLAY.			15	95	40 a	19	21	2.71-p		
TT2	4	1.00	1.25	В	Brown slightly sandy slightly gravelly silty CLAY with rootlets.			24	92	46 a	25	21			
TT2	10	3.25	3.50	В	Brown slightly gravelly sandy silty CLAY.			22	87	37 a	19	18			
TT3	4	1.30	1.60	В	Brown silty CLAY.			20							
TT3	6	2.10	2.50	В	Brown slightly sandy silty CLAY			18	95	43 a	20	23	2.67-p		

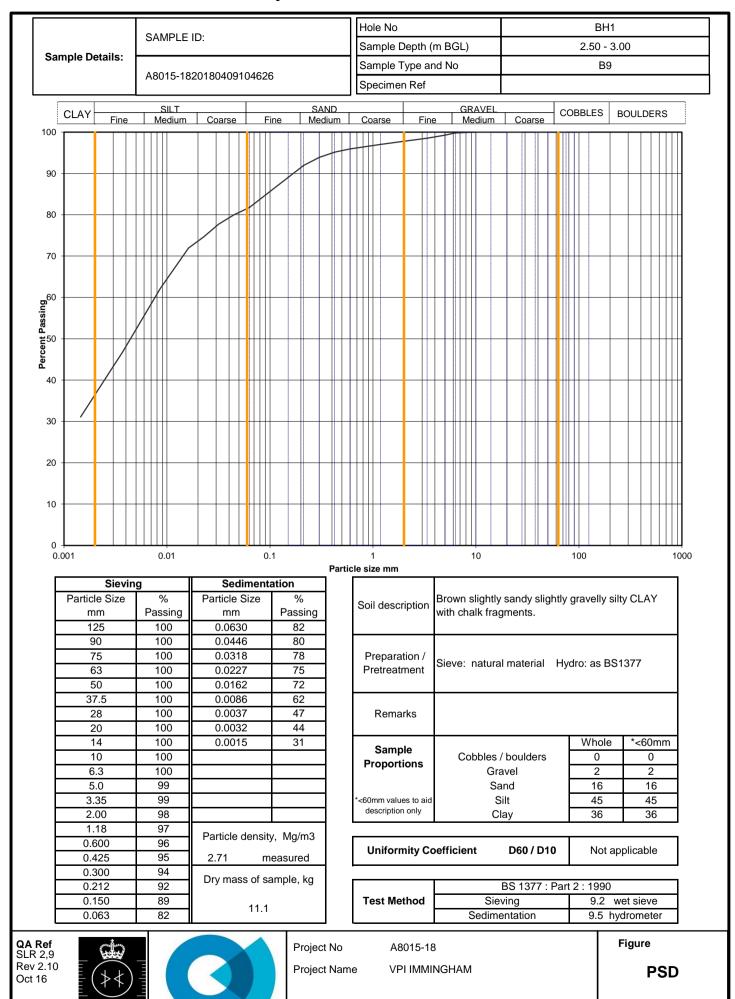
General notes: All above tests carried out to BS1377: 1990 unless annotated otherwise. See Remarks for further details


WL Liquid limit <425um preparation Key: p bulk density, linear WP Plastic limit ps particle density pd dry density a 4 point cone test NP non - plastic n from natural soil -g = gas jar

b 1 point cone test s sieved specimen IP Plasticity Index w moisture content -p = small pyknometer

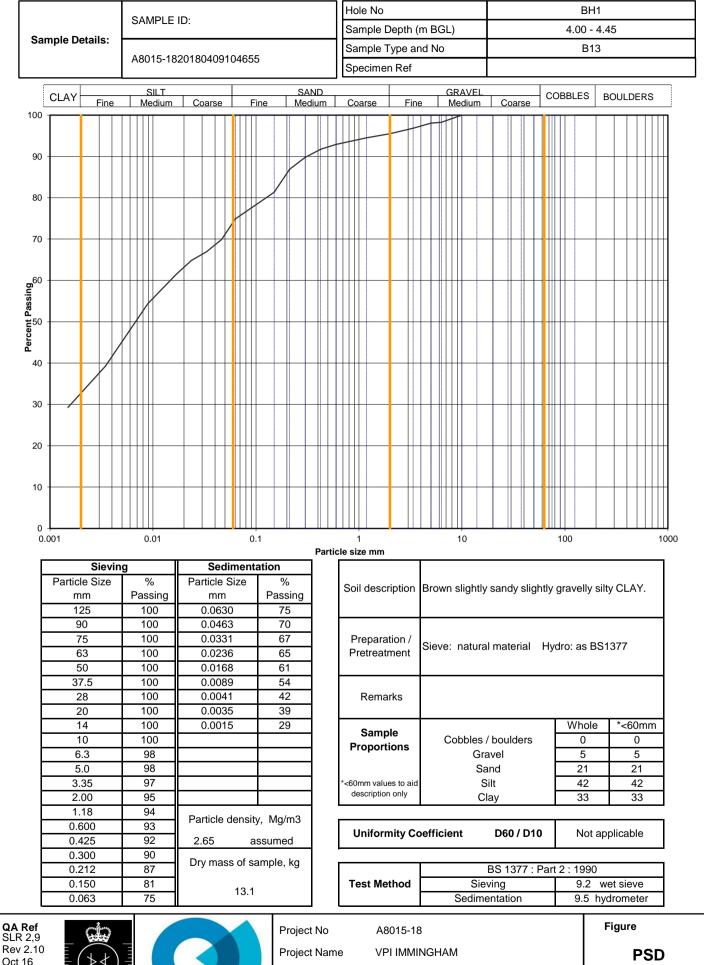
* test carried out to BS EN ISO 17892-1 2014

QA Ref SLR 1 Rev 2.91 Mar 17	
	SOCOTEC


	Project No	A8015-18	Figure
	Project Name	VPI IMMINGHAM	INDX
100000	Opinions and interpretation	Printed: 31/07/2018 12:05	

Opinions and interpretations expressed herein are outside the scope of UKAS

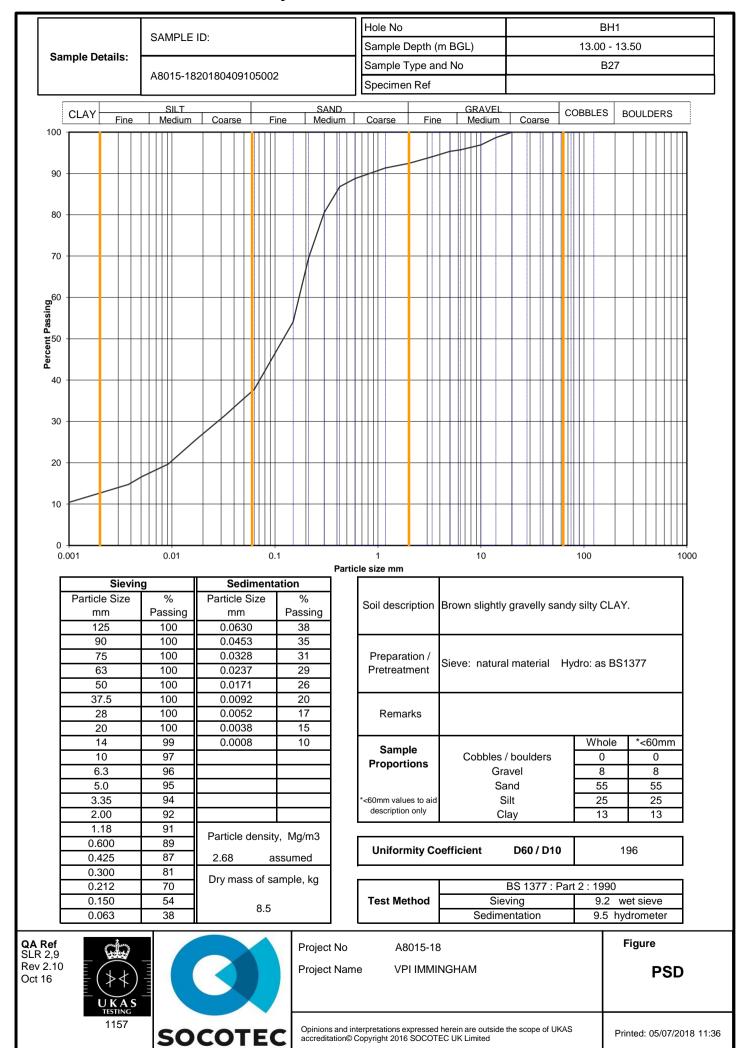
accreditation© Copyright 2016 SOCOTEC UK Limited

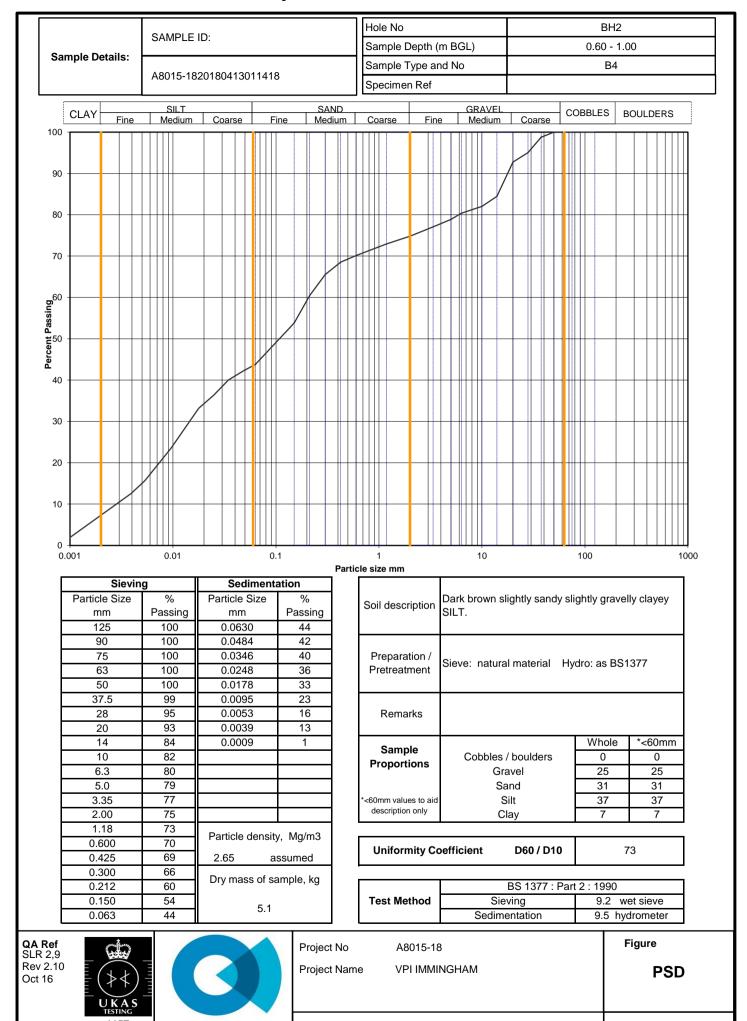

Printed: 05/07/2018 11:36

Opinions and interpretations expressed herein are outside the scope of UKAS

accreditation© Copyright 2016 SOCOTEC UK Limited

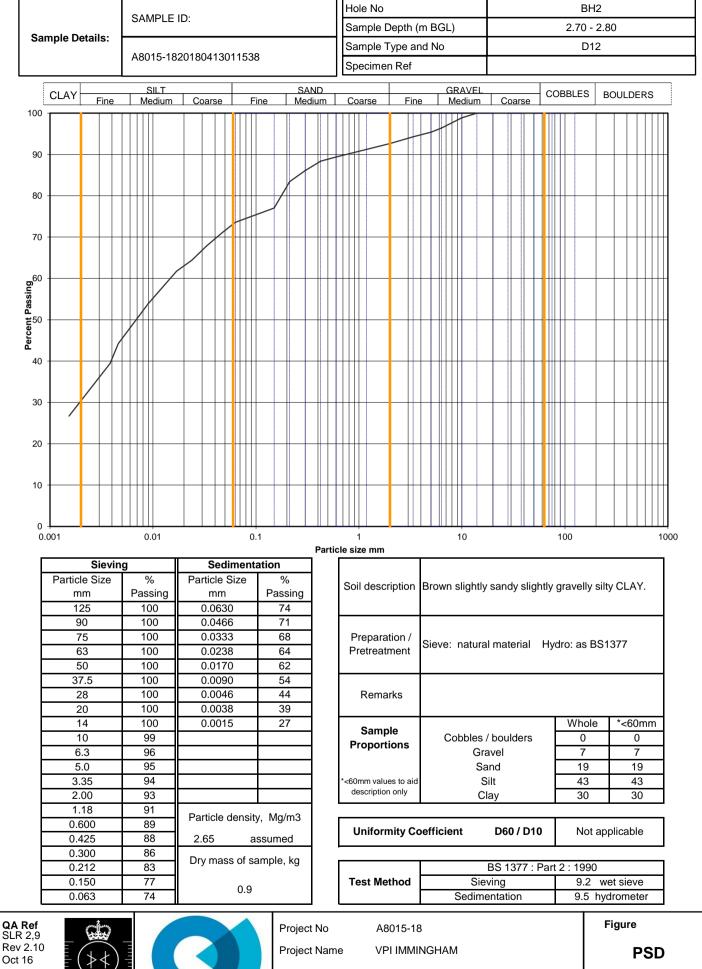
Printed: 05/07/2018 11:36


Rev 2.10 Oct 16


SOCOTEC

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation© Copyright 2016 SOCOTEC UK Limited

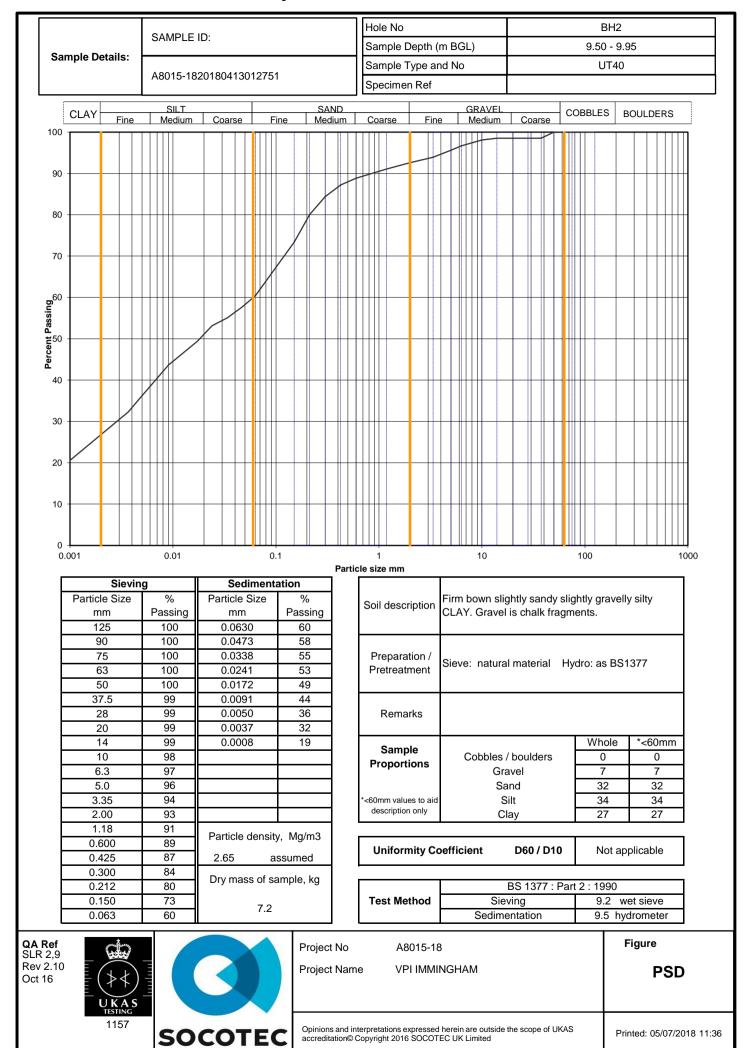
Printed: 05/07/2018 11:36

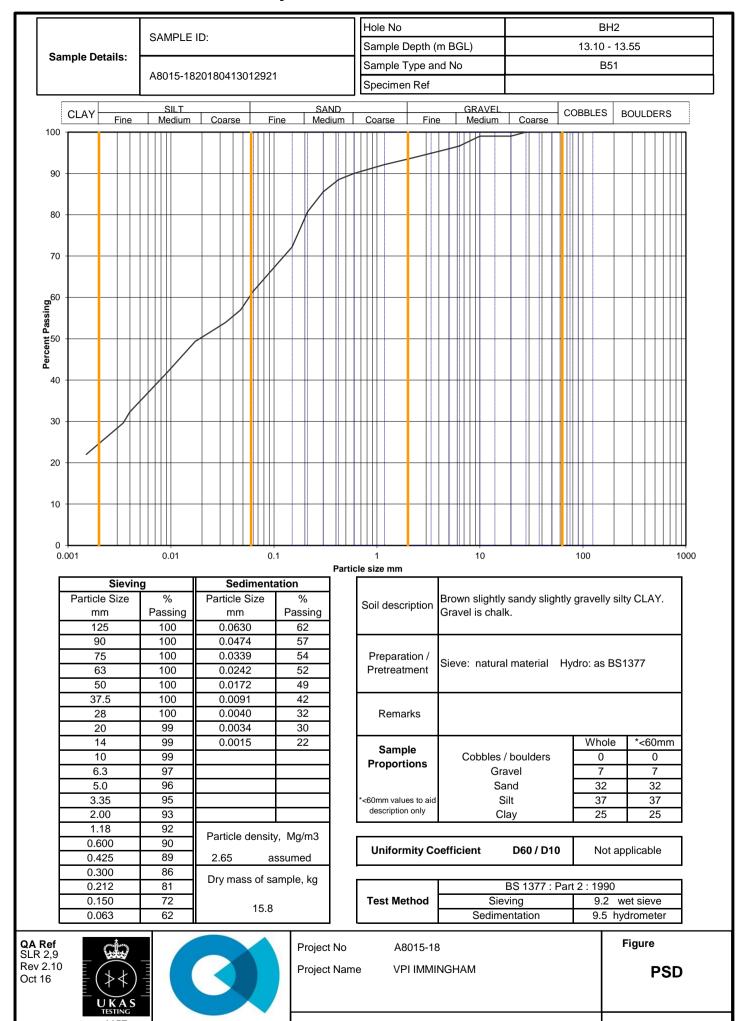

accreditation© Copyright 2016 SOCOTEC UK Limited

Opinions and interpretations expressed herein are outside the scope of UKAS

accreditation© Copyright 2016 SOCOTEC UK Limited

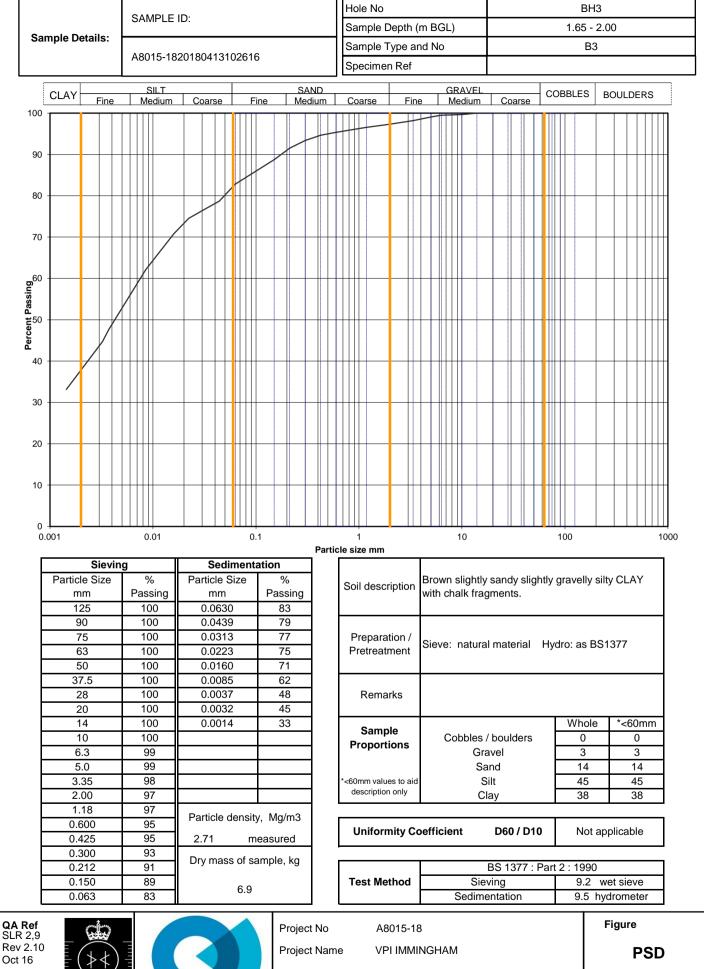
Printed: 05/07/2018 11:36




•	SOCOTEC

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation© Copyright 2016 SOCOTEC UK Limited

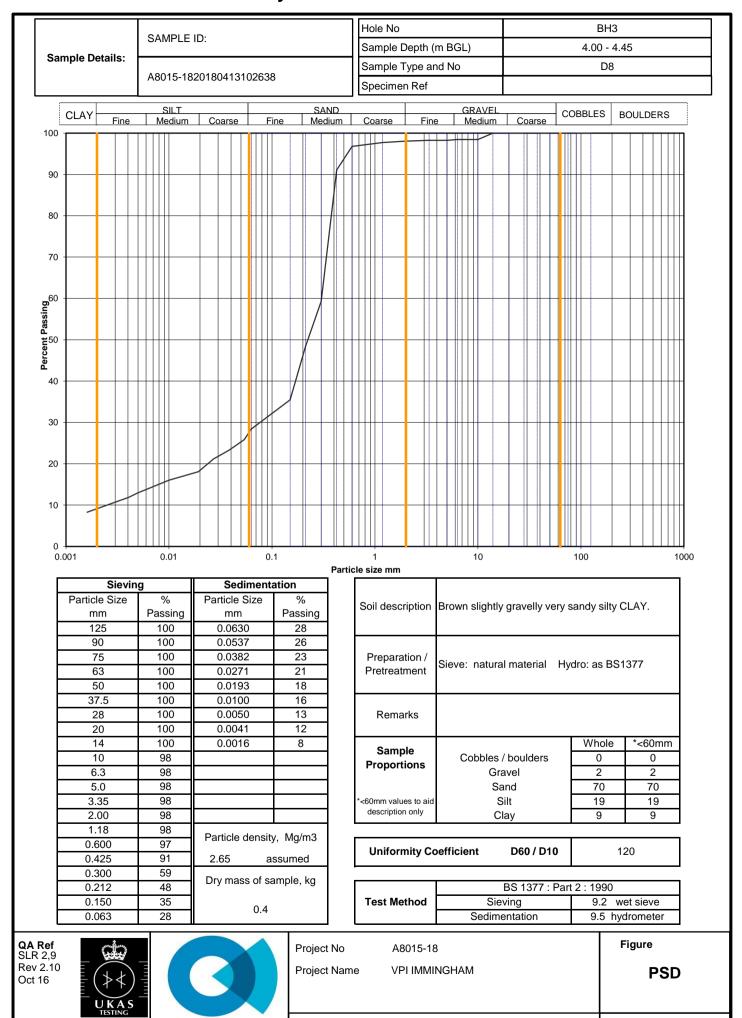
Printed: 05/07/2018 11:36


accreditation© Copyright 2016 SOCOTEC UK Limited

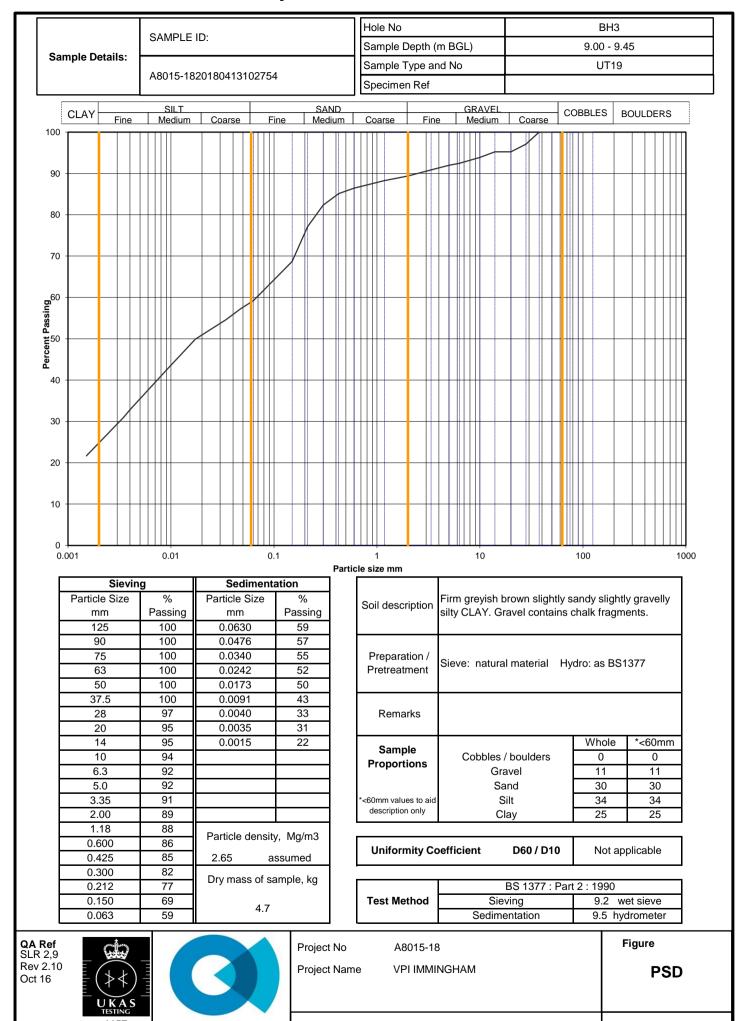
Opinions and interpretations expressed herein are outside the scope of UKAS

accreditation© Copyright 2016 SOCOTEC UK Limited

Printed: 05/07/2018 11:36

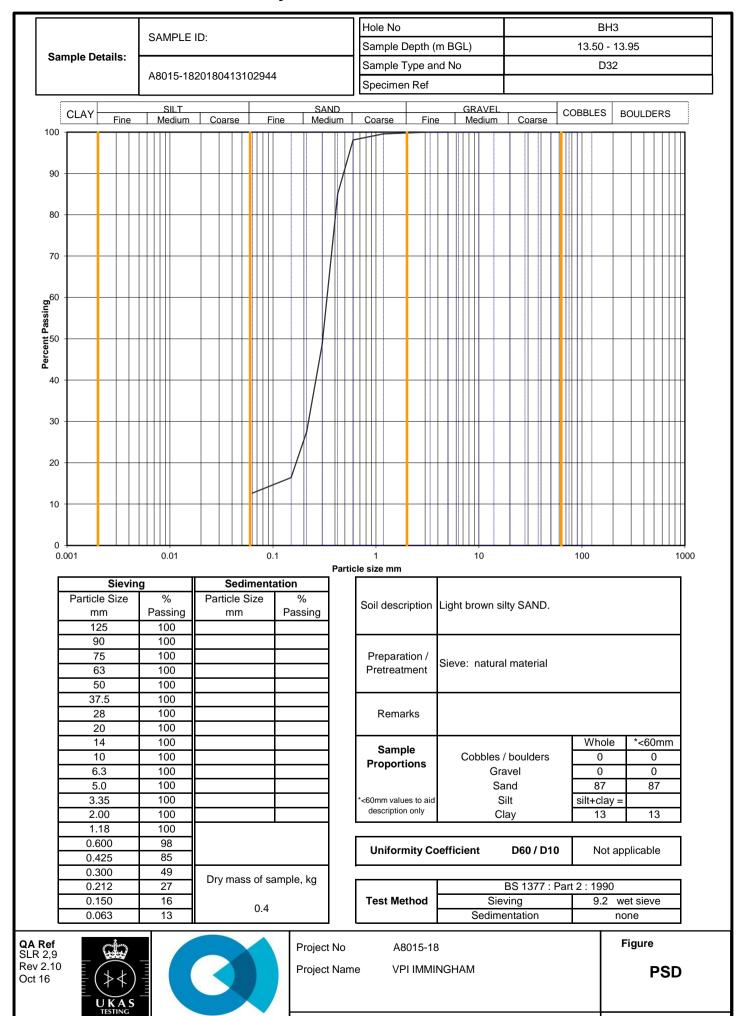

Rev 2.10 Oct 16

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation© Copyright 2016 SOCOTEC UK Limited


Printed: 05/07/2018 11:36

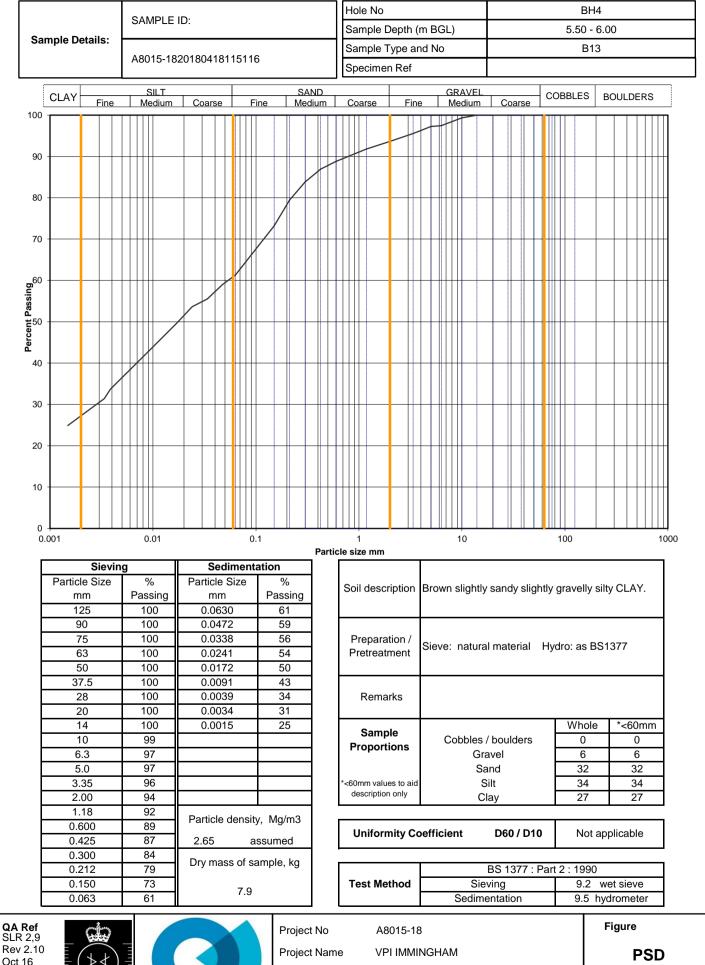
Opinions and interpretations expressed herein are outside the scope of UKAS

accreditation© Copyright 2016 SOCOTEC UK Limited


Printed: 05/07/2018 11:36

Opinions and interpretations expressed herein are outside the scope of UKAS

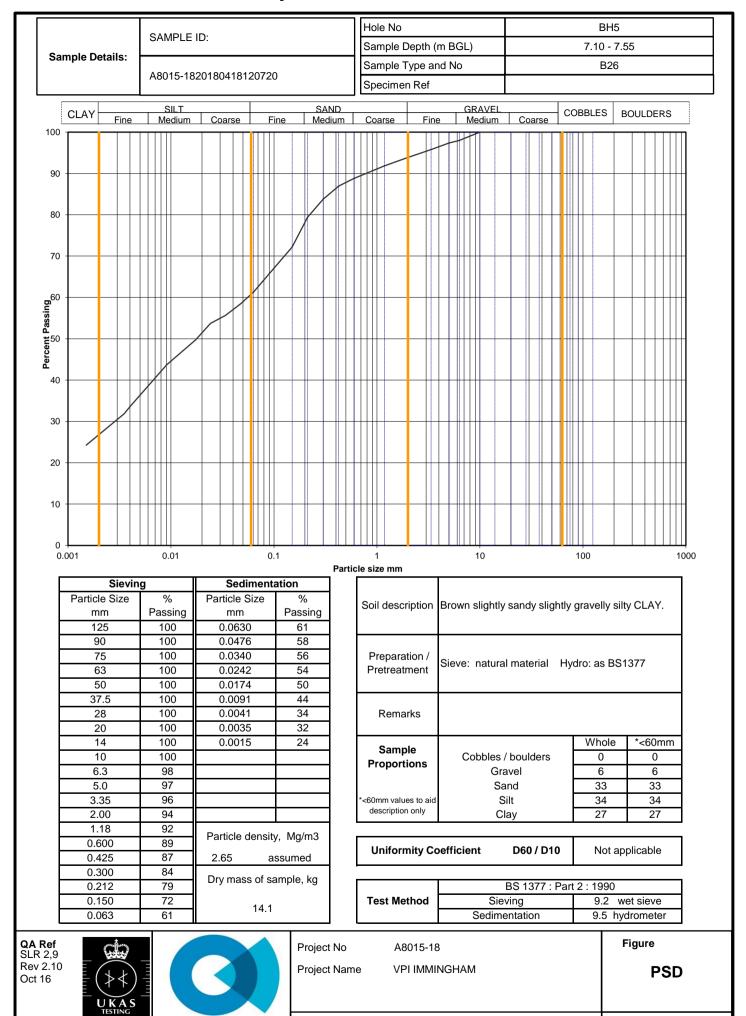
accreditation© Copyright 2016 SOCOTEC UK Limited


Printed: 05/07/2018 11:36

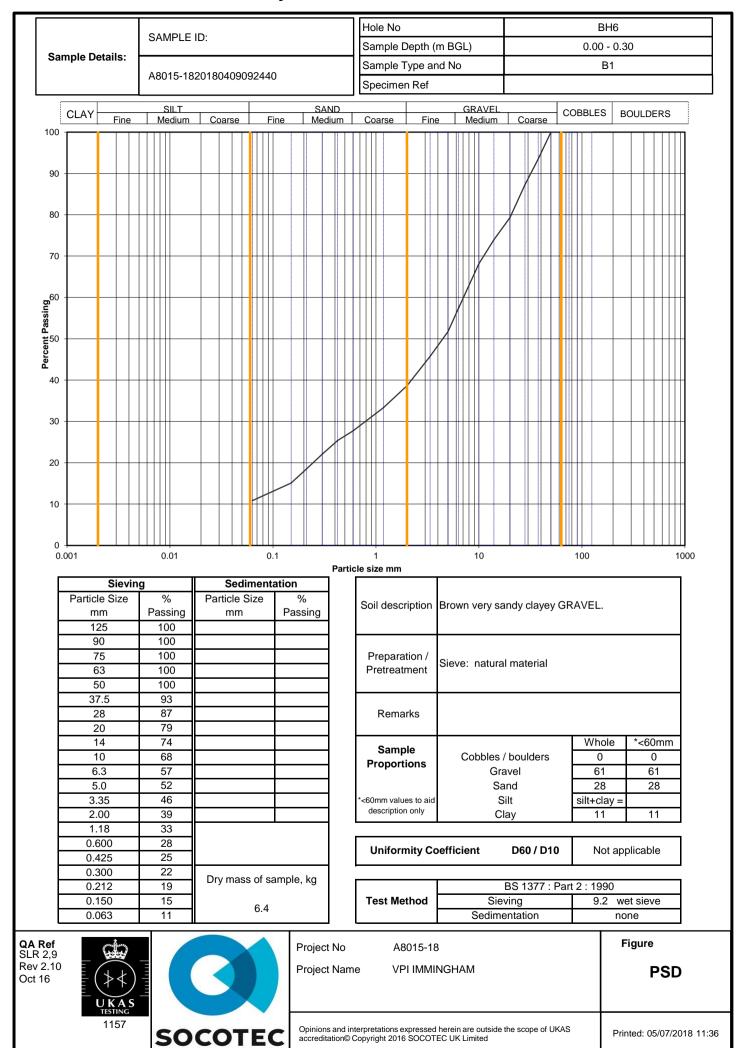
Opinions and interpretations expressed herein are outside the scope of UKAS

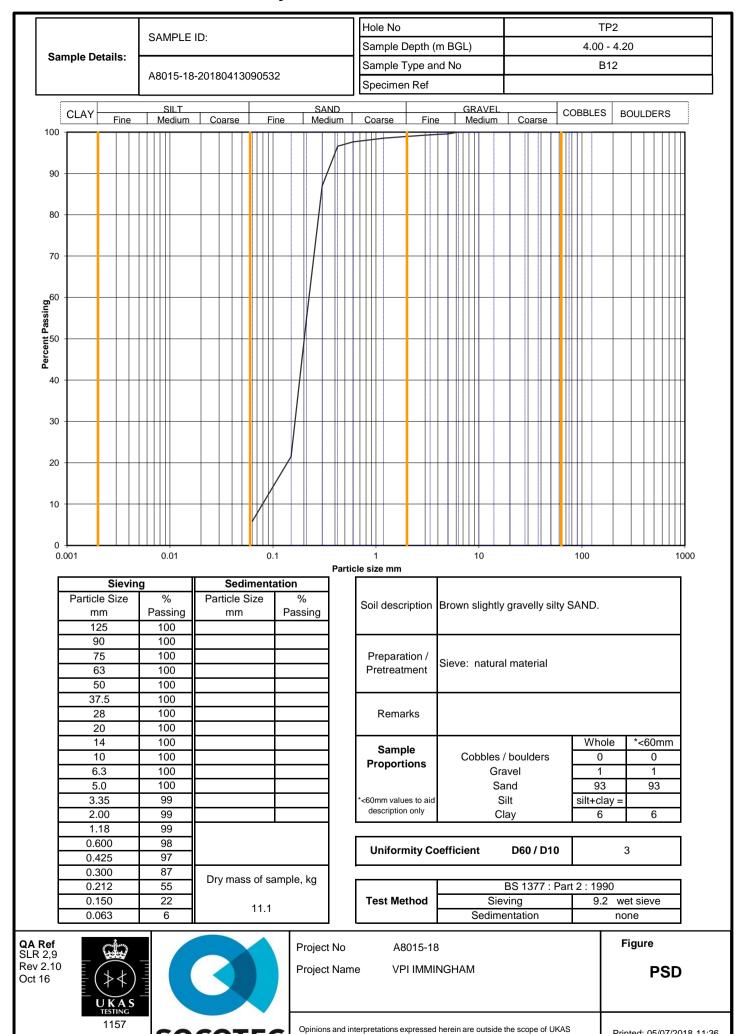
accreditation© Copyright 2016 SOCOTEC UK Limited

Printed: 05/07/2018 11:36


Oct 16

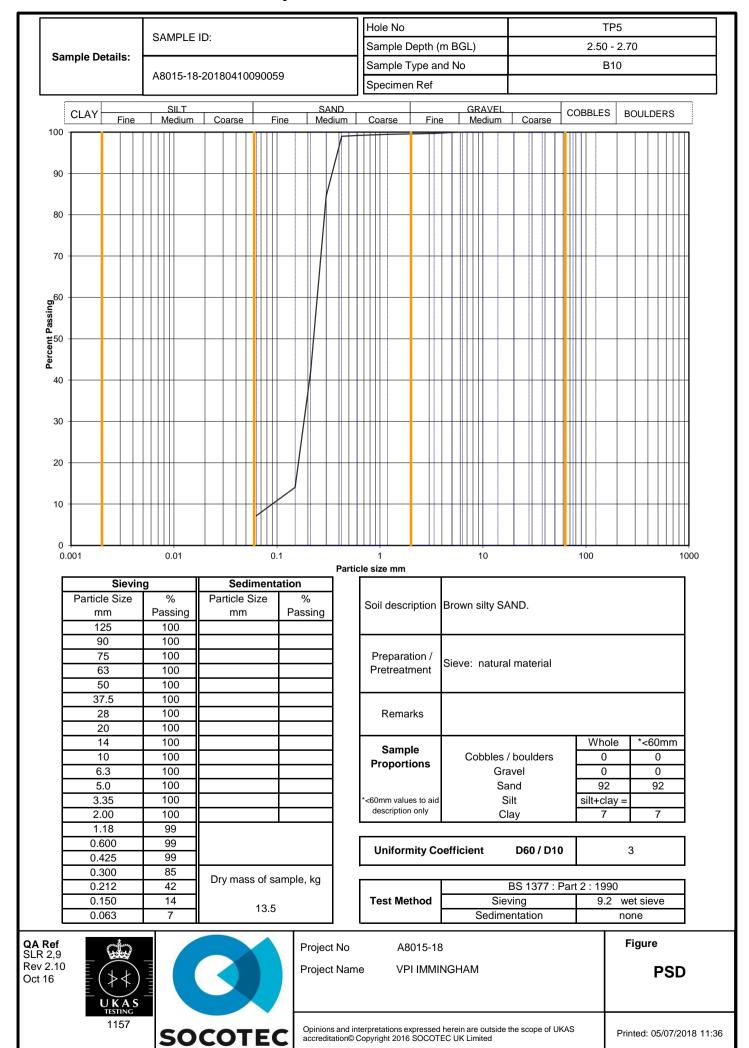
Opinions and interpretations expressed herein are outside the scope of UKAS accreditation© Copyright 2016 SOCOTEC UK Limited

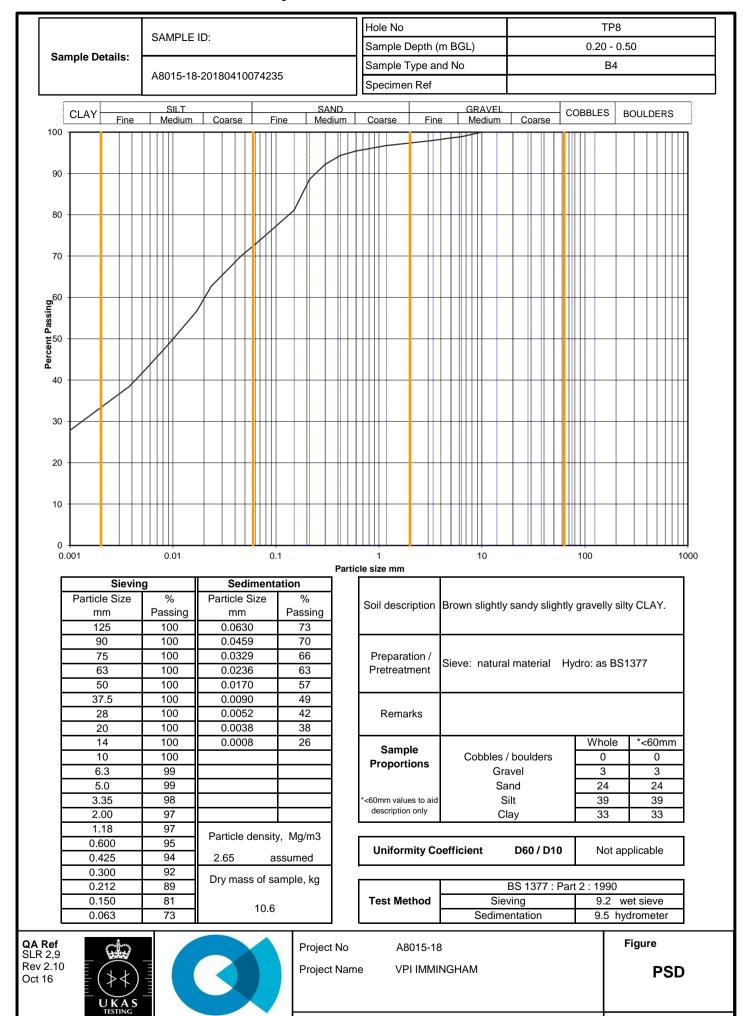

Printed: 05/07/2018 11:36



Opinions and interpretations expressed herein are outside the scope of UKAS

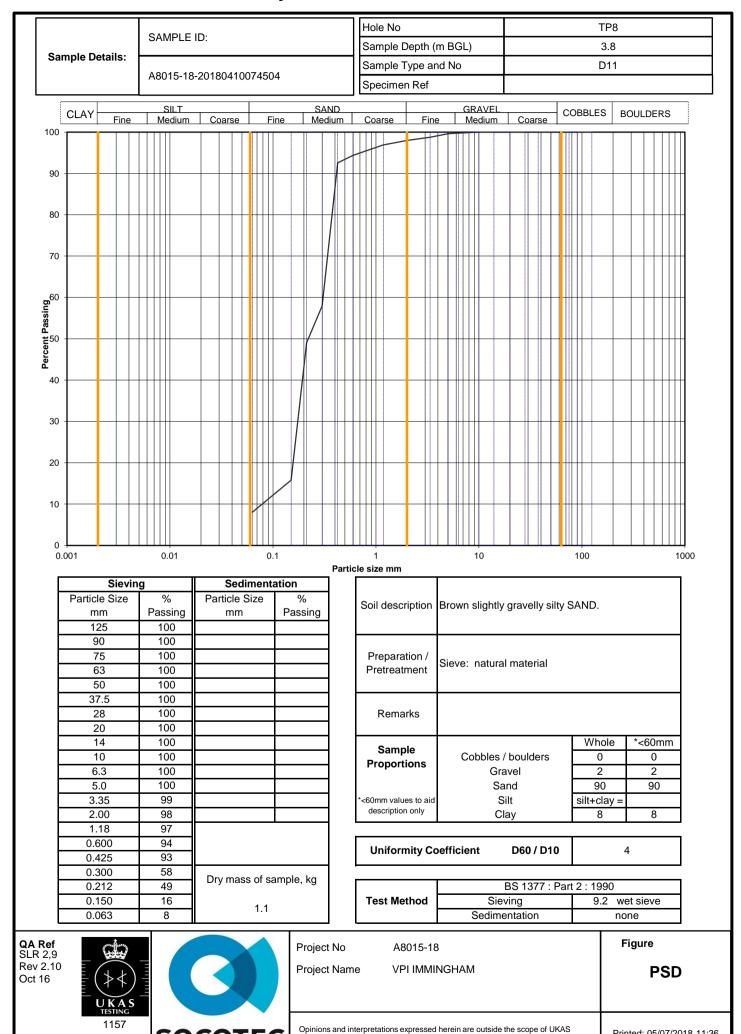
accreditation© Copyright 2016 SOCOTEC UK Limited


Printed: 05/07/2018 11:36

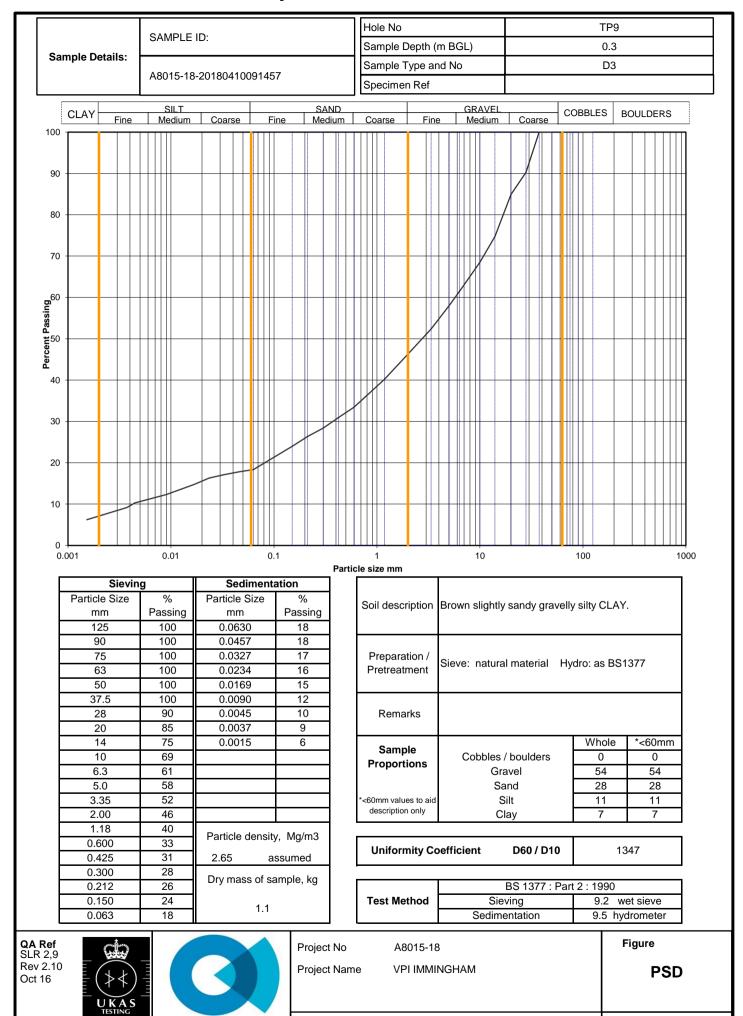


accreditation© Copyright 2016 SOCOTEC UK Limited

Printed: 05/07/2018 11:36

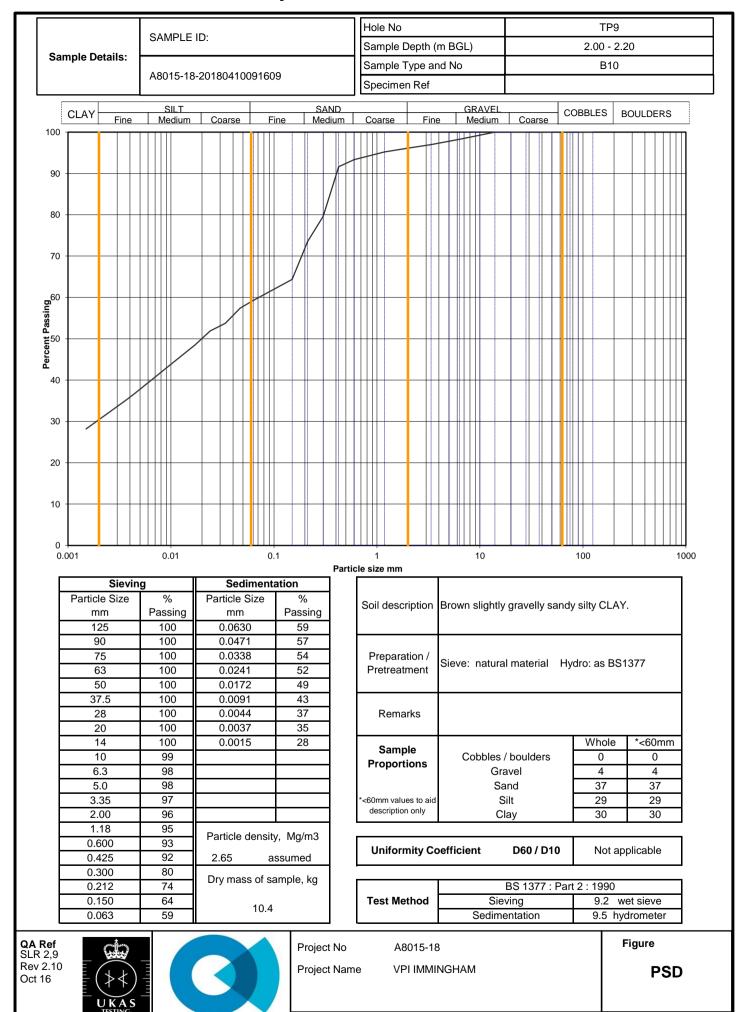


Opinions and interpretations expressed herein are outside the scope of UKAS


accreditation© Copyright 2016 SOCOTEC UK Limited

Printed: 05/07/2018 11:36

accreditation© Copyright 2016 SOCOTEC UK Limited


Printed: 05/07/2018 11:36

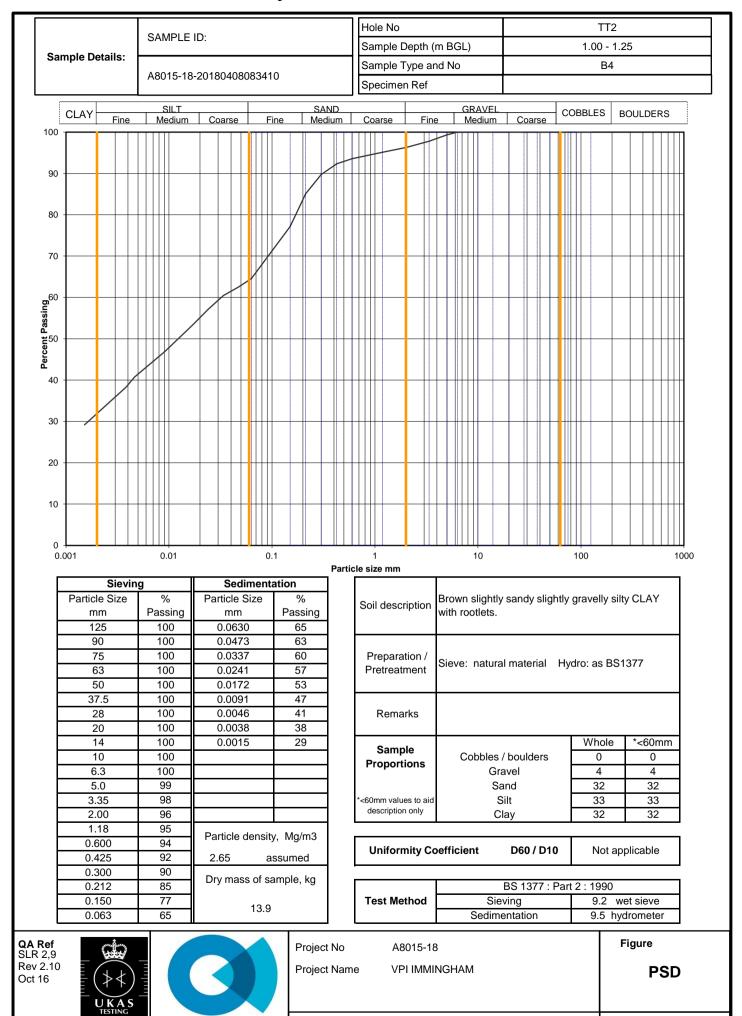
Opinions and interpretations expressed herein are outside the scope of UKAS

accreditation© Copyright 2016 SOCOTEC UK Limited


Printed: 05/07/2018 11:36

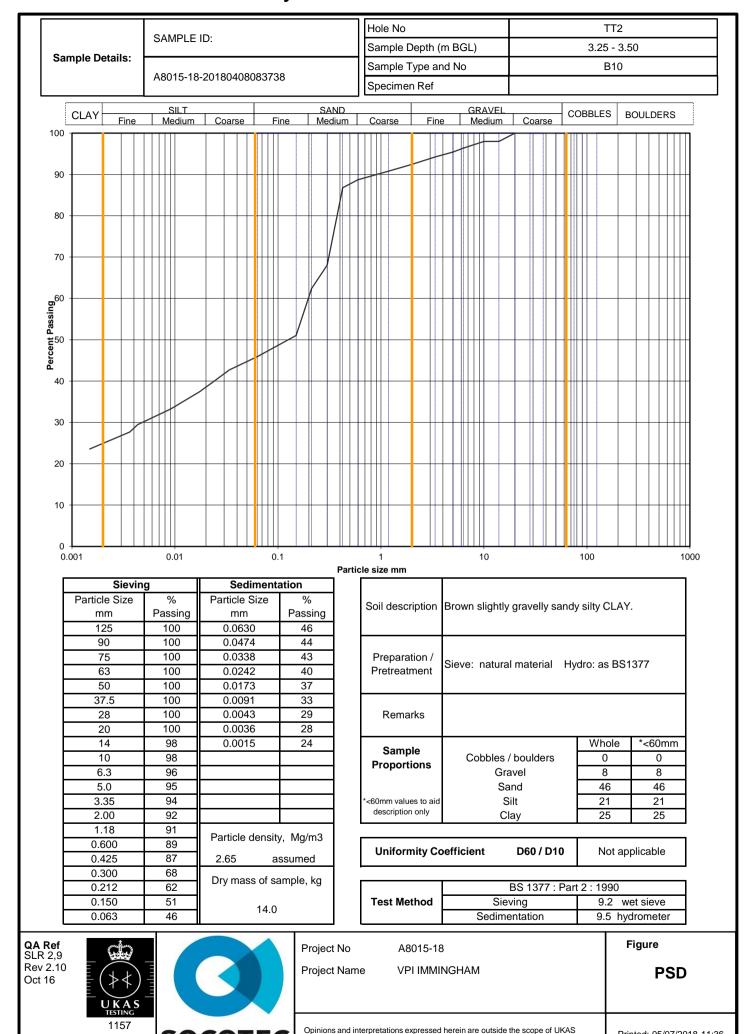
Opinions and interpretations expressed herein are outside the scope of UKAS

accreditation© Copyright 2016 SOCOTEC UK Limited


Printed: 05/07/2018 11:36

Opinions and interpretations expressed herein are outside the scope of UKAS

accreditation© Copyright 2016 SOCOTEC UK Limited


Printed: 05/07/2018 11:36

Opinions and interpretations expressed herein are outside the scope of UKAS

accreditation© Copyright 2016 SOCOTEC UK Limited

Printed: 05/07/2018 11:36

accreditation© Copyright 2016 SOCOTEC UK Limited

Printed: 05/07/2018 11:36

UNCONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TESTS WITHOUT MEASUREMENT OF PORE PRESSURE - SUMMARY OF RESULTS

		Sam	ple			Der	nsity	w	Test	Dia.	ó3	At fail	ure / er	nd of st	tage	Membrane	
Hole No.	No	Dept	h (m)	t. 120	Soil Description	bulk	dry		type			Axial strain	ó1 - ó1	си	M 0	Thickness	Remarks
	No.	from	to	type		Mg	/m3	%		mm	kPa	%	kPa	kPa	D E	mm	
BH1	15	5.00	5.45	UT	Stiff greyish brown slightly sandy slightly gravelly CLAY.	2.21	1.93	15	UUM	99.4 99.4 99.4	100 200 400	11.4 13.4 18.8	203 216 229	101 108 114	Р	0.4	
BH1	20	8.00	8.45	UT	Firm greyish brown slightly sandy slightly gravelly CLAY.	2.21	1.92	15	UUM	102.6 102.6 102.6	160 320 640	7.9 10.4 19.8	110 127 163	55 64 82	Р	0.4	
BH1	35	17.00	17.45	UT	Very stiff greyish brown slightly sandy slightly gravelly CLAY. Gravel is mainly chalk.	2.23	1.96	14	UUM	103.8	250	19.9	506	253	Р	0.4	Sample reached 20% axial strain during 1st stage.
BH1	39	20.00	20.40	UT	Very stiff greyish brown slightly sandy slightly gravelly CLAY. Gravel is chalk.	2.2	1.92	14	UUM UUM	103.6 103.6	250 500	18.4 19.9	524 535	262 268	Р	0.4	Sample reached 20% axial strain during 2nd stage.
BH2	7	1.20	1.65	UT	Firm stiff brown slightly sandy slightly gravelly CLAY	2.05	1.71	20	UUM	103.9 103.9 103.9	25 50 100	7.9 9.8 19.1	166 180 213	83 90 106	Р	0.4	
BH2	28	5.10	5.55	UT	Firm dark brown slightly sandy slightly gravelly CLAY.	2.16	1.86	16	UUM	102.7 102.7 102.7	100 200 400	2.5 4.5 19.8	33 43 66	17 22 33	Р	0.4	
BH2	44	11.00	11.45	UT	Stff greyish brown slightly sandy slightly gravelly CLAY.	2.2	1.91	15	UUM	102.8 102.8 102.8	220 440 880	10.9 12.9 19.9	217 225 254	109 113 127	Р	0.4	
ВН3	19	9.00	9.45	UT	Firm greyish brown slightly sandy slightly gravelly CLAY. Gravel contains chalk fragments.	2.12	1.81	17	UUMR	102.9 102.9 102.9	180 360 720	5.0 6.9 19.8	81 89 113	41 45 56	Р	0.4	
BH4	10	4.50	4.95	UT	Firm to stiff greyish brown slightly sandy slightly gravelly CLAY.	2.19	1.91	14	UUM	102.6 102.6 102.6	90 180 360	10.4 12.3 19.7	220 229 246	110 114 123	Р	0.4	
BH4	22	9.00	9.45	UT	Firm to stiff dark brown slightly sandy slightly gravelly CLAY. Gravel contains chalk fragments.	2.16	1.87	15	UUM	95.9 95.9 95.9	180 360 720	5.4 6.9 19.7	100 108 148	50 54 74	Р	0.4	
BH5	11	2.30	2.75	UT	Very stiff brown slightly sandy slightly gravelly CLAY. Gravel is chalk fragments.	2.14	1.84	16	UUM	102.5 102.5 102.5	45 90 180	16.3 18.8 19.8	537 541 542	268 270 271	Р	0.4	
BH5	27	8.00	8.45	UT	Firm greyish brown slightly sandy slightly gravelly CLAY. Gravel contains chalk.	2.19	1.89	16	UUM	101.9 101.9 101.9	160 320 640	4.0 5.9 18.8	69 83 115	35 41 58	Р	0.4	
BH6	6	2.00	2.45	UT	Very stiff brown mottled grey slightly sandy slightly gravelly CLAY. Gravel contains chalk.	2.13	1.82	17	UUM	102.7 102.7 102.7	40 80 160	10.9 12.4 19.8	446 452 480	223 226 240	Р	0.4	
BH6	14	6.00	6.45	UT	Firm to stiff greyish brown slightly sandy slightly gravelly CLAY. Gravel contains chalk.	2.2	1.91	15	UUM	102.5 102.5 102.5	120 240 480	4.0 6.4 19.3	109 134 174	54 67 87	Р	0.4	

General notes: Tests carried out in accordance with BS1377: Part 7: 1990, clause 8 for single stage, clause 9 for multistage tests. Specimens nominally 2:1 height diameter ratio and tested

си

at a rate of strain of 2%/minute, unless annotated otherwise. Latex rubber membrane used and membrane correction applied in accordance with BS1377-7 8.5.1.4 unless stated.

 Legend
 UU - single stage test (may be in sets of specimens)
 ó3
 cell pressure
 Mode of failure
 P
 plastic

 UUM - multistage test on a single specimen
 ó1 - ó3
 deviator stress
 B
 brittle

QA Ref SLR 2 Rev 2.7 Apr 15

Project No	A8015-18	Figure
Project Name	VPI IMMINGHAM	UUSUM

С

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation. © Copyright 2015 SOCOTEC UK Limited

undrained shear strength

Printed: 05/07/2018 11:44

compound

	Con	solid	ate						n test with I Itistage test						ress	ure	
Project N	No	L	Δ <u>8</u> Ω	15-1	8 8				Sample D	etails:	Hole No)	В	H1			_
Project N			100	15 1					 		Depth (.20 - 1.6	5		
1 10,0001	v arrio										No		6	Туре		UT	
		Į.	MN	ЛING	HAM						ID			71			_
											Spec R	ef					
											<u>'</u>						_
		imen D	etails	3					Soil Desc	•	Firm bro	own sl	ightly sandy	y slightly gra	velly C	CLAY	
	Initial	Length				mm	2	03.24	Specimer /Prepara		UNDIS	TURBI	ED				
		Diame				mm		03.57	-								i
		Bulk D	ensit	у		Mg/m³		2.10	0-4		- Dataila			Method of S	Saturat	ion	1
		Water	Cont	ent		%		19	Sat	uratio	n Details		Increme	ents of cell a	ınd ba	ck pressure	
		Dry de	nsity			Mg/m³		1.76	Cell pressu	ure incr	ements	kPa		50	١		
	After	test							Differential	Pressi	ure	kPa		10	l		
		Bulk D	ensit	у		Mg/m³		2.08	Final Cell F	Pressur	re	kPa		310	0		
		Water	Cont	ent		%		20	Final pore	water p	ressure	kPa		293	.8		
		Dry de	nsity			Mg/m³		1.73	Final B Val	lue				0.9	7		İ
1.0								1					×				
0.8								×	×		×						
							/										
9.0 age	Consolidation parameters (see note to E pt 8, clause				- ×												
o 0.4 ·	Consolidation parameters (see note to pt 8, clause																
0.2	Consolidation Details Consolidation Details Consolidation Details Consolidation Details																
1.0 0.8 0.6 0.0 0.2 0.0 0 50 100 Consolidation Details Drainage Cond Stage No. Cell Pressure a Back Pressure Effective Press Pore pressure a Pore pressure a Pore pressure a Pore pressure a Consolidation parameters (see note to BS1377: pt 8, clause 6.3.4) Coefficient of Coe																	
	0		5	0		100	1	50	200	2	50 50		300	35	i0	400	ი
Consolidation Details Drainage Conditions			00		000			100	,								
Drainage Conditions Stage No. 1	Fro	m radial bo	oundary and	one e	nd	ſ											
	Consolidation Details Drainage Conditions Stage No.																
	Consolidation Details Stage No.	0	kPa														
	Drainage Conditions	300	0	kPa													
	Consolidation Details Stage No.	2	25	50	١	kPa											
	Consolidation Details Coll Present	ssure at sta	art of cons	olidation			30	3	308	324	4	kPa					
					Pore pres	ssure at en	d of cons	olidation			30	1	300	300	0	kPa	
					Pore pres	sure dissi	oation at e	end of consoli	dation		70)	95	100	0	%	
			1							C _{vi}	2.1	2	1.17	1.0	8	m²/year	
			3S13	77 :												m ² /MN	
	pt 8,	clause	6.3.4	ł)	Coefficie	nt of Perme	eability (c	alculated)		k _{vi}	4.4E	-10	1.7E-10) 1.1E-	-10	m/s	İ
)		5			10	1	15	20	2	25		30	3	5 ——	4(0
	1		_														
<u></u>														~ I			
SWS														→ 2			
, ve														_			
† 10 رُ																	
E														_ 3			
ğ15 +																	
e ch																	
<u>\$</u> 20																	
°>																	
25																	ı
	ı													T-:			_
Ref	, 1							~Å~						Figure			
SLR8 Rev 86										Printon	l:20/07/2	N19 1	∩ ∙42		CI	JM	
Feb1								<u> </u>		mileo	1.20/01/2	010 l	U. 4 2		U	J 1V1	
								LIKAS							she	et 1 of 3	
			S	OC	OTEC			TESTING	@ Cc	nyriah	2017.50	COTE	C UK Limit	ed. All rights			_
								1157		ווופוועקי	. 2017 30	JU1E		ou. An rigill	, coel	• • • •	

Ojeci	No	'	A8015	18-د					J	Sample D	Jetails.	Hole IV	۰٥		BH1				
	Name	 e							\longrightarrow	1	,	Depth		JL)	_) - 1.65	5	_	_
•		1		101101	• 4				J	1		No		6		Туре	L'	JT	_
		1	IIVIIVIII	NGHAN	/I				J	1		ID							_
			<u></u>								'	Spec F	Ref	<u> </u>					
Shea		stages	- graph	nical data	a												o failure	e points	_
	240 7												\top					\top	
	200 -	<u></u>																	
, kPa	- /															i l			
- 93	160 -	-	+	-		+		+				— 3	+				-	+	_
, Б	,							+								ļ			
stress	120 -	-	+	-			-	_	+	_	+	_	+	+			-	+	_
Deviator stress (σ1' - σ3') kPa	1															ļ			
Dev	80 -		2	+	+	+	+		+	_	+	+	+					+	_
	40	ہر ا	//													ļ			
	40 -	//	1				1	_			+	_							_
	0 -	\coprod																	
		0	2	4	6	8	10	12	14	16	18	20	22	24	26	3 2	28	30 ε	%
	-	. 🦍	1																
<u>-</u>	6.0	- N	-	-	-	-	_	+				_	+	+				+	_
Principal stress ratio (σ1' / σ3')	1	1/	^ 2														[
io (σ	5.0	+	<i>/</i>	+			+	+	+		+	_	+	+				+	
ss rati			/																
al stre	4.0	1	1					+											_
incipa	3.0								+	+		_ з							
ā			/																
	2.0 -	\vdash											_					+	
	1	1																	
	1.0 + 320 0		2	4 (6	8	10	12	14	16	18	20	22	24	26	6 28	ρα	30 ε	ε % :
	320										16						,	30	<u>-</u>
	310 -																		
	- !		2	`													1		
Pa	300 -	7	1	+															
ıre ki	!						\										1		
ressi	290 -	-	-	+		+	+	+		_	-	+	+	+	\rightarrow	$-\!-\!-\!+$		+	
Pore water pressure kPa								`									1		
re wa	280 -			+			+		_	—	+	+	+					+	_
Po	חלני																1		_
	270 -											3							_
	260 -																		
		Ó	2	4	6	8	10	12	14		18	20	22	24	26	6 28	8 /	30	
								Axıaı	strain, ε	ε% (all plo	ots)								_
ef	÷							~~ ^	4						Fig	gure			
SLR8	86.0			7						P	rinted:2	20/07/20)18 10	:42			CUM	4	
Lab.	18	1						(**)									•	•	
reb		l								1						-	sheet 2		

Consolidated Undrained Triaxial Compression test with Measurement of Pore Water Pressure (BS1377: Part 8: 1990) - Multistage test on a single specimen Sample Details: Hole No Project No BH1 A8015-18 1.20 - 1.65 Depth (m BGL) Project Name No Туре UT 6 **IMMINGHAM** ID Spec Ref **Mohr Circles** 100 80 Shear stress kPa 60 40 20 60 80 100 120 140 160 200 220 240 260 280 300 320 Effective stresses kPa **MIT Stress field** 100 Compression stages 2 3 Stage 325 Cell pressure 312 350 kPa 80 Initial pwp 299 300 301 kPa 25 Initial σ_3 ' 14 49 kPa 60 $(\sigma_1' - \sigma_3')/2$ Rate of strain 1.51 1.51 1.51 %/hr 40 Failure conditions Maximum effective principal Criterion stress ratio 20 Axial strain 1.54 2.47 4.60 (σ_1' / σ_3') $_f$ 6.616 5.321 4.046 0 52.8 $(\sigma_1' - \sigma_3')_f$ 73.0 111.8 kPa 140 160 180 200 303 308 313 kPa u_{f} s' $(\sigma_1' + \sigma_3') / 2 \text{ kPa}$ Cambridge stress field $\sigma_3'_f$ 9 17 37 kPa 200 62 90 148 kPa $\sigma_1'_f$ 0.08 0.11 0.11 160 Time to failure 1.0 1.6 3.0 hrs **Shear Strength Parameters** 120 at peak stress ratio $(\sigma_1' - \sigma_3')$ Linear regression 80 kPa 9.8 ō Ø' 31.0 degrees Manual re-assessment 40 с' kPa ø' degrees 0 40 80 120 200 280 320 400 p' $(\sigma_1' + 2\sigma_3')/3$ kPa Mode of failure Deviator stresses corrected for area change, vertical side drains and 0.594 mm thick rubber membrane(s) Notes: Ref **Figure** SLR8.1 Rev 86.0 Printed:20/07/2018 10:42 **CUM** Feb18

OCOTEC

UKAS
Sheet 3 of 3

© Copyright 2017 SOCOTEC UK Limited. All rights reserved

	Consol	idate	ed Un (drained BS1377	Triaxi	al Coi 8 : 19	mpression 90) - Multis	test with I stage test	Meas on a	ureme single	ent o	f Pore	e Wa n	ater Pre	essure	
Project N	lo	ΔΩ	015-1	<u>۸</u>				Sample D	etails:	Hole No)		BH2	2		
Project N		170	015 1					┥ ゛		Depth (iL)	_	- 0 - 3.75		
i rojecti	anic									No		<u></u>		Туре	UT	
		IM	MING	MAH						ID				. 7		
										Spec R	ef					
										T T						\neg
	Specimer	Deta	ils					Soil Desc		Firm br	own la	minated	slightl	ly sandy CL	AY.	
	Initial	ath			mm	2	02.89	Specimen /Prepara		UNDIS	TURBI	ED				
	Len Dia	neter			mm		03.07	7. Topa.c	4							_
		k Dens	sity		Mg/m³		2.03	_					Me	thod of Sat	uration	
	Wat	ter Co	ntent		%		25	Sat	uration	n Details		Incre	ments	of cell and	back pressi	ıre
	Dry	densit	у		Mg/m³		1.63	Cell pressu	re incr	ements	kPa			50		
	After test							Differential	Pressu	ıre	kPa			10		
	Bull	k Dens	sity		Mg/m³		2.04	Final Cell F	ressur	е	kPa			310		
	Wat	ter Coı	ntent		%		24	Final pore	water p	ressure	kPa			300		
	Dry	densit	у		Mg/m³		1.64	Final B Val	ue					0.97		
1.0							1					<u></u>				_
0.0							×			×						
No. No.																
≥ □ _{0.4}	Water Content % Dry density Mg/m³ 1.0 0.8 0.6 0.0 0.0 0 50 100 Consolidation Details Consolidation Details Consolidation parameters (see note to BS1377: pt 8, clause 6.3.4) Consolidation Details Water Content % Mg/m³ Drainage Conditions Stage No. Cell Pressure applied Back Pressure applied Effective Pressure Pore pressure at start Pore pressure at end Pore pressure dissipate Coefficient of Consolidation Coefficient of Compression Coefficient of Permeans															
Water Content %6 24 Final B Value Fi																
0.2	Dry density Mg/m 1.63															
Water Content % 24 Final pore water pressure kPa Final B Value	300		350		400											
	O.8	000		100												
	Drainage Conditions	ne end	\neg													
	Drainage Conditions															
	Consolidation Details Drainage Conditions From radial boundary and one en	kPa														
	Drainage Conditions From radial bound	300	kPa													
	Consolidation Details Drainage Conditions			55	5	11	0	220	kPa							
		Stage N Cell Pre Back Pr Effective Pore pre Pore pre Pore pre Coefficie ameters e note to BS1377: B, clause 6.3.4)	Pore press	ure at stai	t of cons	solidation			34	8	36	5	419	kPa		
				Pore press	ure at end	of cons	olidation			30	1	30	1	302	kPa	
				Pore press	ure dissip	ation at e	end of consolidat	ion		97	7	99)	98	%	
												0.9	4		m²/ye	
			377 :												m ² /M	
	pt 8, clau	se 6.3	.4)	Coefficient	of Perme	ability (c	alculated)		k _{vi}	1.1E	-10	5.1E	-11	3.3E-11	I m/s	
			10	20)		80	40	5	50		60		70		80
ľ																
= 10																
l sw																
<u>-20</u> †							_									
ы В																
g30 +															——× 1	
e ch																
<u>\$</u> 40																-
>																
₅₀]																
Ref	Т							I					\neg	Figure		
	,						cio							. iguie		
SLR8 Rev 86									Printed	1:20/07/2	018 1	0:43			CUM	
Feb1							(><) =	'		0,0112	J . U I	3.10		,		
							UKAS								sheet 1 of	3
		\$	SOC	OTEC			TESTING 1157	© Co	pyright	2017 SO	COTE	C UK Lir	nited.	All rights re		
							1107		-							

oject	: No		A8015	-18					San	nple Details:	Hole N	No		BH2	2			
	Name)									Depth		GL)		0 - 3.7	5		
-,-					*						No		15	•	Туре	L	JT	_
			IMMI	NGHAN	/ I						ID							
											Spec	Ref						
She		stages	- graphi	ical data	a											o failure	e points	
	300 -														2			_
	250 -							_							3			
	-					/												
,	200 -															-		_
						/												
	150 -					/2										-		_
				/	/ /													
	100 -				-													_
			6	1														
	50 -		1	,														_
	0 - (4.0 T)	1	2	3	4	5	6 7	8	9	10	11	12	1	13	14	15 ε	%
	4.0																	
	3.5																	_
	3.0				•	2												_
			_^	1				•										
	2.5												\rightarrow	_	_ 3			_
		/	1 /															
Ė	2.0				/													_
			/		/													
	1.5 -																	
	1.0 -																	
	420	1	1	2	3	4	5	6 7	8	9	10	11	12	1	3	14	15 ε	%
	400 -																	_
х Га	380 -																	_
SSUre					/													
r pre	360 -																	_
wate	0.40				$\downarrow /$													
Pore water pressure kPa	340 -				Ta	2							\rightarrow		3			
-	320 -	_	/ •	1														
	520																	
	300 -																	
	(0	1	2	3	4	5	6 7 Axial st		9 (all plots)	10	11	12	1	3	14	15	
									T					Fi	gure			_
SLF	8.1												4.5			~ ! !*		
lev Fet	86.0 018							> <		Printed:2	20/07/20	018 10	:43			CUN	1	
								KAS							:	sheet 2	of 3	

Consolidated Undrained Triaxial Compression test with Measurement of Pore Water Pressure (BS1377: Part 8: 1990) - Multistage test on a single specimen Sample Details: Hole No Project No BH2 A8015-18 3.30 - 3.75 Depth (m BGL) Project Name No 15 Туре UT **IMMINGHAM** ID Spec Ref **Mohr Circles** 200 160 Shear stress kPa 120 80 40 120 200 240 280 320 400 440 480 520 600 640 Effective stresses kPa **MIT Stress field** 200 Compression stages 2 3 Stage Cell pressure 355 410 520 kPa 160 Initial pwp 301 301 302 kPa 54 109 Initial σ_3 ' 218 kPa 120 $(\sigma_{1}^{'} - \sigma_{3}^{'})/2$ Rate of strain 0.71 0.71 0.71 %/hr 80 Failure conditions Maximum effective principal Criterion 40 Axial strain 1.76 3.70 6.40 (σ_1' / σ_3') $_f$ 2.839 3.051 2.751 0 60.3 $(\sigma_1' - \sigma_3')_f$ 150.5 267.7 kPa 120 200 280 320 360 400 322 337 367 kPa u_{f} s' $(\sigma_1' + \sigma_3') / 2 \text{ kPa}$ Cambridge stress field $\sigma_3{'}_f$ 33 73 153 kPa 500 93 224 421 kPa $\sigma_1'_f$ 0.35 0.24 0.24 400 Time to failure 2.5 5.2 9.0 hrs **Shear Strength Parameters** 300 at peak stress ratio $(\sigma_1' - \sigma_3')$ Linear regression 200 kPa 3.8 ō Ø' 27.4 degrees Manual re-assessment 100 с' kPa ø' degrees 0 100 200 300 500 700 800 1000 p' $(\sigma_1' + 2\sigma_3')/3$ kPa Mode of failure Deviator stresses corrected for area change, vertical side drains and 0.594 mm thick rubber membrane(s) Notes: Ref **Figure** SLR8.1 Rev 86.0 **CUM** Printed:20/07/2018 10:43 Feb18

© Copyright 2017 SOCOTEC UK Limited. All rights reserved

sheet 3 of 3

	Consoli	date	ed Un (drained BS1377	Triaxi : Part	al Co 8 : 19	mpression 1 90) - Multis	test with N stage test	Meas on a	ureme single	ent o	f Pore	e Wa n	ater Pre	ssure	
Project N	lo	A80	015-1	8				Sample D	etails:	Hole No)		вна	3		
Project N	Jame	1.0						\dashv		Depth (m BG	iL)	5 - !	5.45		
	tamo									No		10		Туре	UT	
		IMI	MING	HAM						ID				71		
										Spec R	ef					
		-								1						\exists
	Specimen Initial	Detail	ls					Soil Desc		Firm bro	own sl	ightly sar	ndy sli	ghtly gravel	lly CLAY	
	Lenç	ath			mm	2	203.48	Specimen /Prepara		UNDIS	TURBI	ED				
		neter			mm		02.37									
	Bulk	Densi	ty		Mg/m³		2.19	Cot	urotion	n Details			Me	thod of Satu	uration	
	Wate	er Con	tent		%		20	Sati	uratioi	i Details		Incre	ments	of cell and	back pressure	е
	Dry (density	/		Mg/m³		1.82	Cell pressu	re incr	ements	kPa			50		
	After test							Differential	Pressu	ure	kPa			10		
	Bulk	Densi	ty		Mg/m³		2.26	Final Cell P			kPa			260		
		er Con			%		16	Final pore v		ressure	kPa			237.3		
	Dry	density	/		Mg/m³		1.94	Final B Val	ue					0.99		
1.0										×						7
0.8								×								
							1									
9.0 alue																
o 0.4 ⋅	Size Size															
0.2	Drainage Conditions From radial boundary and one end															
	O. O. O. O. O. O. O. O.															
	Drainage Conditions		⊣ 400													
	Drainage Conditions															
				Drainage Co	onditions						Fro	m radial	boun	darv and on	e end	7
										1						
				Cell Pressu	re applie	d				33	5	370	0	440	kPa	
	Back Pressure applied 300 300 300 300	kPa														
	Consolidation Details Effective Pressure applied 335 300	70)	140	kPa											
		Consolidation Details Cell Pressure applied Back Pressure applied Effective Pressure Pore pressure at start of consolidation Pore pressure at end of consolidation Pore pressure dissipation at end of consolidation Consolidation parameters see note to BS1377: pt 8, clause 6.3.4) Cell Pressure applied Back Pressure applied Consolidation Pore pressure dissipation at end of consolidation Coefficient of Consolidation Coefficient of Permeability Coefficient of Permeability (calculated)			31	4	32	7	383	kPa						
		Back Pressure applied Effective Pressure Pore pressure at start of consolidation Pore pressure at end of consolidation Pore pressure dissipation at end of consolidation Consolidation coarameters see note to BS1377: pt 8, clause 6.3.4) Back Pressure applied Coefficient of Consolidation Coefficient of Consolidation Coefficient of Compressibility Coefficient of Permeability (calculated)			30	0	300	0	302	kPa						
	Details Back Pressure applied 300 Effective Pressure 35 Pore pressure at start of consolidation 314 Pore pressure at end of consolidation 300 Pore pressure dissipation at end of consolidation 100 Consolidation parameters (see note to BS1377: pt 8, clause 6.3.4) Coefficient of Compressibility M₂/i 0.39 Coefficient of Permeability (calculated) k₂/i 1.6E-10 Root time minutes 0 10 20 30 40 50		10	0	100	0	98	%								
						m²/year										
						m ² /MN										
		-10	7.4E	-11	3.9E-11	m/s										
			_						_							
		1	0	20			±	40		0		60		70		80 —
ľ																
9 5																
if sw		\nearrow														
9 10	\														—× 1	
는 10 t							2									
9																
615 																
e c																
<u></u> 520 +							_ 3									+
>																
₂₅ L																
Ref							*							Figure		
SLR8																
Rev 86 Feb1								P	rinted	1:20/07/2	018 1	0:43		(CUM	
герт	~															
		6		OTEC			U K A S TESTING	<u> </u>							sheet 1 of 3	
		3		JIEC			1157	© Co	pyright	2017 SO	COTE	C UK Lir	nited.	All rights re	eserved	

ject l	No		A8015	 5-18					San	nple Details:	: Hole N	10		вн3	}		
	Name	ż	,						\dashv		Depth		GL)	5 - 5			
•	•	,									No		10		Туре	U	ΙΤ
			IMM	NGHAN	Л						ID		<u> </u>				
									\bot		Spec I	Ref		_			_
hea	ring s	stages	- graph	nical data	a											o failure	points
	300	_															
	250 -				 						3	-	_				-
	200 -											+	_				
	150 -	<u> </u>		/													
	150 -	·	1	2													
	100 -		//		-	 		-				_	_				-
			Jr 1														
	50 -	/				+						+	+				
	0	/ 1															
	0 -l 0 4.0 T)	2	4	6	8	10	12 14	1 16	18	20	22	24	2	26 2	28	30 ε%
	3.5		1	2	-	-		+			+						-
			/														
	3.0		1				_				_						+
	2.5	\perp		<u>'</u>		<u> </u>		1			3				<u> </u>		<u> </u>
	2.0	1			+	-	-	+ +			+						+
	1.5																
	1.0																
	370 -	·	2	4	6 8	8	10	12 14	16	18	20	22	24	26	6 2	28 :	30 ε%
	350 -			\downarrow		-		-			_	+	_				-
\$			/	1													
)	330 -		+-		\		_	-				_	_				-
			1														
	310 -	\sim	()	2		<u> </u>	\downarrow	-			_	+	\dashv				-
,		/	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \														
	290 -	1										_	_				
	270 -			1				1	16		30				<u> </u>		_
	(0	2	4	6	8	10	12 14 Axial str		18 (all plots)	20	22	24	20	6 _	28 :	30
								+						Fig	gure		
SLR8 ev 8	8.1 36.0						= _			Printed:2	20/07/2C	\1Q 1(· 4Q			CUM	•
Feb ²	18							ightarrow ightarro		Fillitou.	20/01, 2 0	110 10	.40				
		I						$\mathcal{L}_{A} \subset \mathbb{R}$							ş	sheet 2	of 3

Consolidated Undrained Triaxial Compression test with Measurement of Pore Water Pressure (BS1377: Part 8: 1990) - Multistage test on a single specimen Sample Details: Hole No Project No BH3 A8015-18 5 - 5.45 Depth (m BGL) Project Name No 10 Туре UT IMMINGHAM ID Spec Ref **Mohr Circles** 200 160 Shear stress kPa 120 80 40 80 120 160 200 240 280 320 400 440 480 520 600 640 Effective stresses kPa **MIT Stress field** 200 Compression stages 2 3 Stage 370 Cell pressure 335 440 kPa 160 Initial pwp 300 294 kPa Initial σ_3 ' 35 76 138 kPa 120 $(\sigma_1' - \sigma_3')/2$ Rate of strain 1.02 1.02 1.02 %/hr 80 Failure conditions Maximum effective principal Criterion stress ratio 40 Axial strain 2.26 3.25 4.98 (σ_1' / σ_3') $_f$ 3.480 3.556 3.126 0 138.0 $(\sigma_1' - \sigma_3')_f$ 78.1 207.3 kPa 120 200 280 320 360 400 304 316 343 kPa u_{f} s' $(\sigma_1' + \sigma_3') / 2 \text{ kPa}$ Cambridge stress field $\sigma_3{'}_f$ 32 54 98 kPa 300 110 192 305 kPa $\sigma_1'_f$ 0.04 0.16 0.20 240 Time to failure 2.2 3.2 4.9 hrs **Shear Strength Parameters** 180 at peak stress ratio $(\sigma_1' - \sigma_3')$ Linear regression 120 kPa 6.9 ō Ø' degrees 29.4 Manual re-assessment 60 с' kPa ø' degrees 0 50 100 150 250 350 400 450 500 p' $(\sigma_1' + 2\sigma_3')/3$ kPa Mode of failure Deviator stresses corrected for area change, vertical side drains and 0.595 mm thick rubber membrane(s) Notes: Ref **Figure** SLR8.1 Rev 86.0 **CUM** Printed:20/07/2018 10:43 Feb18 sheet 3 of 3

© Copyright 2017 SOCOTEC UK Limited. All rights reserved

	Con	solid	ate	d Un	drained BS1377	Triaxi	al Co 8 : 19	mpressio 90) - Mul	n te Itista	st with Mage test o	leas on a	ureme single	ent o	f Pore	e Wa	ater Pr	ress	ure	
Project N	No		A80	15-1	8					Sample De	tails:	Hole No)		BH4	1			
Project N			100							•		Depth (iL)) - 7.9 [!]	5		
i rojecti	varric											No		18		Туре		UT	
			IMN	ЛING	HAM							ID				.) -		•	
												Spec R	ef						
												1							$\overline{1}$
	Spec Initial	imen D	etails	5					_	Soil Descri		Firm bro	own sl	ightly sai	ndy sli	ghtly grav	velly C	LAY.	
	IIIIIai	Length	1			mm	2	203.49		Specimen '/ /Preparat		UNDIS	ΓURΒΙ	ED					
		Diame				mm		03.68	'										
		Bulk D	ensit	y		Mg/m³		2.22	1 [<u> </u>			Met	thod of S	aturati	on	
		Water	Cont	ent		%		14		Satu	ration	n Details		Incre	ments	of cell a	nd bac	k pressu	е
		Dry de	nsity			Mg/m³		1.95		Cell pressure	e incre	ements	kPa			50			
	After	test								Differential F	ressu	ıre	kPa			10			
		Bulk D	ensit	y		Mg/m³		2.23		Final Cell Pr	essur	е	kPa			310)		
		Water	Cont	ent		%		13		Final pore w	ater p	ressure	kPa			287.	6		
		Dry de	nsity			Mg/m³		1.97		Final B Valu	е					0.97	7		
1.0																			_
1.0												×		×					
8.0										×									
9 0.6																			_
3 val						×													
Consolidation Details Stage No. 1 2 Cell Pressure applied 365 430 Back Pressure applied 300 300 Effective Pressure 65 130 Pore pressure at start of consolidation 347 374 Pore pressure at end of consolidation 303 300 Pore pressure dissipation at end of consolidation 94 100 Consolidation parameters (see note to BS1377: Coefficient of Compressibility Mvi 0.24 0.12																			
Drainage Conditions From radial boundary and			+																
0.0																			_
	0		5	0	1	00	1					50		300		350	0		400
								Applie	d cell p	oressure kPa	a .								
					Drainage (Conditions							Fro	m radial	bound	dary and	one er	nd	
					Stage No.							1		2		3			
	Come	. مانحامان			Cell Press	ure applied	d					36	5	43	0	560)	kPa	
)		Back Pres	sure applie	ed					30	0	30	0	300)	kPa	
																		kPa	
																	_	kPa	
		Pore pressure at start of consolidation Pore pressure at end of consolidation Pore pressure dissipation at end of consolidation Coefficient of Consolidation Coefficient of Compressibility Coefficient of Permeability (calculated											kPa						
		Pore pressure at end of consolidation Pore pressure dissipation at end of consolidation Pore pressure dissipation at end of consolidation Coefficient of Consolidation Coefficient of Compressibility Coefficient of Permeability (calculated)	end of consoli	idation									%						
			1	-														m²/yea	
			BS13	77 :														m ² /MN	
	pt 8,	clause	6.3.4	.)	Coefficient	t of Perme	ability (c	calculated)			k _{vi}	1.6E	-10	7.7E	-11	3.5E-	11	m/s	
						_										_	_		
			10	,	2	U		5U +	4	U	5)U		60		70	U		80
	\setminus																		
<u>=</u> _	//																		
ws J	/ '																		
, Ve	/	. //																	
† 10ئ		///																	\exists
E		//	1																
ğ15 +								2											
chi.													_					0	
Ĕ ₂₀								*										. 3	
N /																			
25																			
Ref	1														F	Figure			
	,							a din								rigure			
SLR8 Rev 86										Dr	intad	:20/07/2	በ1ደ 1	0.44			CU	IM	
Feb1								E (> <)) 🚪	''	cu	0,01,2	J 1 U I	JT-T				, 1VI	
								UKAS									she	et 1 of 3	
			S	OC	OTEC			TESTING 1157		© Cop	yright	2017 SO	COTE	C UK Lir	nited.	All rights			

oject	No		A8015	j-18					S	ample De	tails:	Hole N	lo		BH	4			
	Name)	,									Depth		GL)	_	0 - 7.9	5		
-,					4							No		18		Туре		UT	
			HVHVH	NGHAN	/ I							ID							
												Spec F	Ref						
Shea	aring s	stages	- graph	ical data	a												o failu	ure point	ts
	000								_										
	500																\perp		_
KPa APa													+						_
3	400																-		
s (a.																			
Deviator stress (σ1' - σ3') kPa	300			+/									+	+		+		+	
Viator				1/	2	2													
3	200 +			1													†		
	100 -			1													\perp		
	.		1 /																
	0 1		<u> </u>	<u> </u>		,	<u> </u>					12	1.1	10			<u> </u>	15	
	4.0)	1	2	3	4	5	6 7	<u>'</u>	8 9		10	11	12		13	14	15	ε%
	3.5				2												+		
b / .Lb	3.0		<u> </u>			•													
allo	3.0	_ /		7/													-	_	_
200	2.5	\perp														<u> </u>	-	_	
Principal stress ratio(σ1' / σ3')																			
Princ	2.0	+	+ /	 															
				/															
	1.5 -		+ +	-															
	1.0																		
	0 400 -			8 9		10	11	12		13	14	15	ε%						
	380 -			+															
e kPa	360 -			+													+	+	
ssur	0.40																		
Pore water pressure kPa	340 -				\ ,														
e wat	320 -		$\rightarrow \downarrow$	1							<u></u>							_	
Pore				1									_						
	300 -			+	+											<u> </u>		+	
																			_
	280 - ()	1	2	3	4	5	6 7		8 9		10	11	12		13	14	15	
								Axial st	rain, ε %	% (all plot	s)								
f CLD	0.1							~ ^							Fi	igure			
SLR Rev 8	36.0									Prin	ted:2	0/07/20	18 10	:44			CUI	М	
Feb	18							P4) 🖥	1										
							_ \	ノ _ =									sheet 2	of o	

Consolidated Undrained Triaxial Compression test with Measurement of Pore Water Pressure (BS1377: Part 8: 1990) - Multistage test on a single specimen Sample Details: Hole No Project No BH4 A8015-18 7.50 - 7.95 Depth (m BGL) Project Name No 18 Туре UT IMMINGHAM ID Spec Ref **Mohr Circles** 200 160 Shear stress kPa 120 80 40 120 160 200 240 280 320 400 440 480 520 560 600 640 Effective stresses kPa **MIT Stress field** 500 Compression stages 2 3 Stage 430 Cell pressure 365 560 kPa 400 Initial pwp 302 300 kPa Initial σ_3 ' 63 130 258 kPa 300 $(\sigma_1' - \sigma_3')/2$ Rate of strain 1.56 1.56 1.56 %/hr 200 Failure conditions Maximum effective principal Criterion 100 Axial strain 2.19 3.40 4.22 (σ_1' / σ_3') $_f$ 3.863 3.523 3.183 0 146.9 $(\sigma_1' - \sigma_3')_f$ 249.6 392.0 kPa 1000 500 700 800 900 314 331 380 kPa u_{f} s' $(\sigma_1' + \sigma_3') / 2 \text{ kPa}$ Cambridge stress field $\sigma_3'_f$ 51 99 180 kPa 500 198 348 572 kPa $\sigma_1'_f$ 0.08 0.12 0.20 400 Time to failure 2.2 2.7 hrs **Shear Strength Parameters** 300 at peak stress ratio $(\sigma_1' - \sigma_3')$ Linear regression 200 15.9 kPa ō Ø' degrees 29.1 Manual re-assessment 100 с' kPa ø' degrees 0 100 200 300 700 800 1000 p' $(\sigma_1' + 2\sigma_3')/3$ kPa Mode of failure Deviator stresses corrected for area change, vertical side drains and 0.596 mm thick rubber membrane(s) Notes: Ref **Figure** SLR8.1 Rev 86.0 **CUM** Printed:20/07/2018 10:44

Feb18

sheet 3 of 3

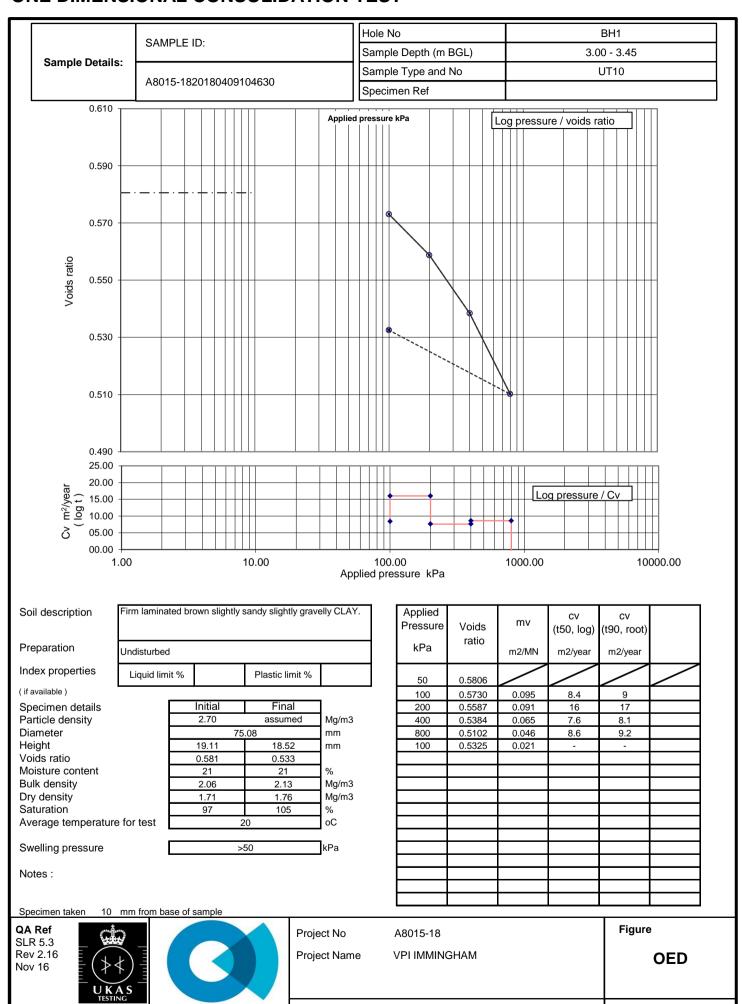
© Copyright 2017 SOCOTEC UK Limited. All rights reserved

	Conson	uaic	(BS1377 :	Part	8 : 19	mpressior 90) - Muli	tista	ge test (on a	single	spe	ecime	n	ater Fre	SSUIC	
Project N	lo	A80)15-1	.8				(Sample De	tails:	Hole No)		BHS	5		
Project N	lame										Depth (m BG	iL)	11 -	11.45		
,		l									No		35		Туре	UT	
		limi	MING	HAM							ID					•	
											Spec R	ef					
	Specimen	Detail	s						Soil Descri	iption	Firm bro	own sl	ightly sai	ndy sli	ghtly grave	elly CLAY	
	Initial							┧┟	Specimen	Tyne							
	Leng	ıth			mm	2	03.00		/Preparat		UNDIS	ΓURΒΙ	ED				
	Diam	neter			mm	1	03.08	<u> </u>									
	Bulk	Densi	ty		Mg/m³		2.16		Satu	ıration	n Details			Me	thod of Sat	turation	
	Wate	er Con	tent		%		17	!					Incre	ments		d back pressi	ure
		density	'		Mg/m³		1.84	1 -	Cell pressur			kPa			50		
	After test							1 H	Differential F			kPa			10		
				I													
								1			ressure	kPa					
	Dry (aensity			ivig/m³		1.85	J L	Finai B Vaiu	ie					0.96		
1.0							ж		×		×		×				\neg
0.8																	_
Φ ο ο																	
valu o.o	Stage No.																
1.0																	
0.2	Bulk Density Mg/m² 2.17		_														
0.0	1.0																
	O.8 O.2 O.0	400															
	Drainage Conditions From radial boundary and one er																
	Stage No. 1 2 3	ne end															
	Drainage Conditions																
	Drainage Conditions From radial boundary and one Stage No. 1 2 3 355 410	kPa															
	Drainage Conditions							kPa									
		Drainage Conditions Stage No. Cell Pressure applied Back Pressure applied Effective Pressure Pore pressure at start of consolidation Pore pressure at end of consolidation Pore pressure dissipation at end of consolidation arameters ee note to BS1377: t 8, clause 6.3.4) Drainage Conditions Stage No. Cell Pressure applied Back Pressure at end of consolidation Pore pressure dissipation at end of consolidation Coefficient of Consolidation Coefficient of Compressibility Coefficient of Permeability (calculated)										kPa					
		Stage No. Cell Pressure applied Back Pressure applied Effective Pressure Pore pressure at start of consolidation Pore pressure at end of consolidation Pore pressure dissipation at end of consolidation rameters see note to BS1377: 8, clause 6.3.4) Stage No. Cell Pressure applied Effective Pressure Consolidation Coefficient of Consolidation Coefficient of Compressibility Coefficient of Permeability (calculated)										kPa kPa					
		Back Pressure applied Effective Pressure Pore pressure at start of consolidation Pore pressure at end of consolidation Pore pressure dissipation at end of consolidation Romanders Per note to BS1377: 8, clause 6.3.4) Back Pressure applied Effective Pressure Consolidation Pore pressure dissipation at end of consolidation Coefficient of Consolidation Coefficient of Compressibility Coefficient of Permeability (calculated)		lation								%					
	Consolidati	Effective Pressure Pore pressure at start of consolidation Pore pressure at end of consolidation Pore pressure dissipation at end of consolidation Pore pressure dissipation at end of consolidation Coefficient of Consolidation Coefficient of Compressibility Coefficient of Permeability (calculated)	eria di coristila	ialion		C.						m²/ye	ar				
	parameters	;									_					m ² /M	
	pro, olado	0.0.	.,			, ,		t time	minutos	•							
0		1	0	20		3				5	60		60		70		80
_																	
- 5 kg																	_
# 6 8	/			_													
÷10			_														
ᆔ					_ `		× 1										
φ 215																	
char						_	~ 2										
e a						_											
nlo T																	
25																3	
													'				
Ref							are Aure								Figure		
SLR8									_		00/0=/	0.1 ~ ·				0115	
Rev 86 Feb1							$\left[\left(\right) \right]$		Pr	rınted	:20/07/2	018 1	0:44			CUM	
. 551																sheet 1 of	3
		S	OC	OTEC			TESTING				0017.00	COTE	0111711				<u>. </u>
							1157		© Cop	yrıght	2017 SO	COTE	UK Li	nited.	All rights r	eserved	

oject	No		A8015	5-18					5	Sample Deta	ils:	Hole N	0		ВН	5				_
oject	Name)										Depth			11	- 11.4				_
			IIVAVAIN	NGHAN	1						- 1	No		35		Туре		UT		_
			11011011	VOI 17 11 -	'1							ID Space	7-t							_
		*	nh								_	Spec F	let							_
Shea	ring s	stages	- grapıı	ical data	1		T										o fa	ilure po		_
												+	+						_	3
2	200 -							_				+	+				+			_
2	160 -							<u> </u>			_									-
;	160 -								_		_									_
Deviator stress (O1 - O3) Ara	120 -		ļ ,	/									_	_			_	_		_
; 5			/																	
<u>:</u>	80 -		1	2								+	+				+	+		_
	40 -		//								_								_	_
	40 -	Y	1																	-
	0 -	4												10						_
	4.0	1	1	2	3	4	5	6	7	8 9		10	11	12		13	14	15	ε %	-
			` '_																	
2	3.5	\top		2													+			-
	3.0	\perp	/		_	_	_										\perp	_		_
1			/								_									
1	2.5	+	-														+	\uparrow	_	3
rincipal stress fatto (01 / 03)		11	/																	
Ē	2.0	11	1/														+			-
	1.5 -	$full_{oldsymbol{\perp}}$																_		
	·																			
	1.0		1	2 (a ,	4	5	6	,	0 9		10	11	12		13	14	15	ε 9	-%
360 360 340 320 320 1 2 3 4 5 6 7 8 9		10		-		13	1		-	-										
	260																			
	300																			
КРа	340												_	\dashv		-	_	_		_
sure																				
bres	320 -	_	1	2										+						-
water	200 -	[_			_				_				_	_
Pore	300	•									_			_		\top	\top			-
_	280 -			-								\		\dashv		-	_	_		_
															_	+	+	_	_	3
	260	0	1	2	3	4	5		7	8 9		10	11	12		13	14	15		-
										% (all plots)									_
f OLD					_			~~ ^							F	igure				
SLR Rev 8	36.0						_ /			Printe	d:20	0/07/20	18 10	:44			CL	JM		
Feb	18							* *) =											2	
				COTE			L	KAS									snee	t 2 of	3	

Consolidated Undrained Triaxial Compression test with Measurement of Pore Water Pressure (BS1377: Part 8: 1990) - Multistage test on a single specimen Sample Details: Hole No BH5 Project No A8015-18 11 - 11.45 Depth (m BGL) Project Name No 35 Туре UT IMMINGHAM ID Spec Ref **Mohr Circles** 100 80 Shear stress kPa 60 40 20 40 100 120 140 160 200 220 240 260 280 300 320 Effective stresses kPa **MIT Stress field** 200 Compression stages 2 3 Stage 355 Cell pressure 327 410 kPa 160 Initial pwp 302 300 kPa 25 Initial σ_3 ' 55 108 kPa 120 $(\sigma_1' - \sigma_3')/2$ Rate of strain 0.50 0.50 0.50 %/hr 80 Failure conditions Maximum effective principal Criterion stress ratio 40 Axial strain 0.87 1.60 3.46 (σ_1' / σ_3') $_f$ 3.952 3.551 3.172 0 35.4 $(\sigma_1' - \sigma_3')_f$ 81.6 167.3 kPa 120 280 320 360 400 315 323 333 kPa u_{f} s' $(\sigma_1' + \sigma_3') / 2 \text{ kPa}$ Cambridge stress field $\sigma_3'_f$ 12 32 77 kPa 240 47 114 244 kPa $\sigma_1'_f$ 0.37 0.28 0.19 200 Time to failure 1.7 3.2 6.9 hrs 160 **Shear Strength Parameters** at peak stress ratio $(\alpha_1' - \alpha_3')$ 120 Linear regression kPa 4.0 80 ō Ø' 30.1 degrees Manual re-assessment 40 с' kPa ø' degrees 0 40 80 120 280 320 400 p' $(\sigma_1' + 2\sigma_3')/3$ kPa Mode of failure Deviator stresses corrected for area change, vertical side drains and 0.595 mm thick rubber membrane(s) Notes: Ref **Figure** SLR8.1 Rev 86.0 **CUM** Printed:20/07/2018 10:44 Feb18

© Copyright 2017 SOCOTEC UK Limited. All rights reserved

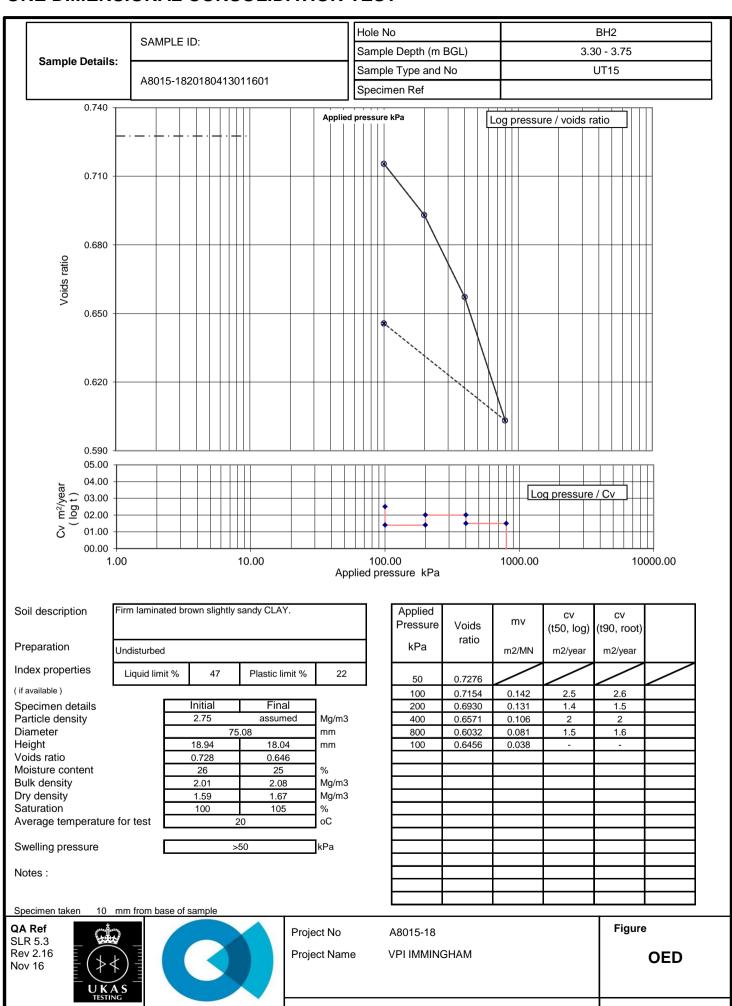

sheet 3 of 3

	Consoli	date	d Un	drained Tri BS1377 : Pa	axial Co art 8 : 19	mpression t 990) - Multis	test with I stage test	Meas on a	ureme	nt o	f Pore	Wa n	ater Press	sure
Project N	lo	Δ <u>8</u> Ω)15-1	8			Sample D	etails:	Hole No)		вне		
	Project Name		713-1	0			-		Depth (_		9.45	
Projectiv	lame								No		19		Туре	UT
		IMI	ИING	HAM					ID		19		туре	101
										_				
									Spec R	et				
	Specimen	Detail	s				Soil Desc	ription	Soft to f	irm bro	own sligh	ıtly sa	ndy slightly gr	avelly CLAY.
	Initial						Specimer	1 Туре	UNDIS	ri irri	=D			
	Leng	th		n	nm	203.49	/Prepara	ation	ONDIO	OTIBL				
	Diam					102.79								
		Densit	•	Mg/		2.14	Sat	uration	n Details				thod of Satura	
		er Cont			%	17					Increr	ments	of cell and ba	ack pressure
	-	lensity		Mg/	m³	1.84	Cell pressu			kPa			50	
	After test						Differential			kPa			10	
		Densit	-	Mg/		2.17	Final Cell F			kPa			260	
		er Cont			%	15	Final pore		ressure	kPa			238	
ļ	Dry c	lensity		Mg/	m³	1.88	Final B Val	ue					0.96	
1.0 -									×					
0.8 -						×	×							
9.0 <u>-</u>														
- 6.0 B value														
0.2 -														
0.0 -														
(0	5	60	100		150	200		50		300		350	400
						Applied ce	ell pressure kF	'a						
				Drainage Condi	tions					Fro	m radial	bound	dary and one	end
				Stage No.					1		2		3	
	Consolidat			Cell Pressure ap	pplied				35	5	410)	520	kPa
	Details	ion		Back Pressure a	applied				30	0	300)	300	kPa
				Effective Pressu					55	5	110)	220	kPa
				Pore pressure a	t start of cor	nsolidation			33	3	371	1	459	kPa
				Pore pressure a					30		303		300	kPa
				Pore pressure d	lissipation at	end of consolidati	on		10	0	96		100	%
	Consolidation parameters			Coefficient of Co				C_{vi}	2.4		1.42	2	1.38	m²/year
	(see note to		377 :	Coefficient of Co				M_{vi}	0.3	6	0.17	7	0.09	m ² /MN
	pt 8, claus			Coefficient of Pe	ermeability (calculated)		k_{vi}	2.7E	-10	7.4E-	11	3.8E-11	m/s
						Root tii	me minutes							
0		10)	20		30	40	5	50		60		70	80
0	/													
	1													
Volume change mL (-ve if swell)	-													
s ii s	//													
× 10 +														
ا آ ا														
9 -	`													
<u>2</u> 15		1												
b e c				$\overline{}$										
<u></u> <u>5</u> 20 +						2								→ 1
>														
25						A 3								
												<u> </u>		
Ref						رىدىن 📩							Figure	
SLR8													_	
Rev 86 Feb1			•			[\\\]	l F	rinted	:20/07/2	U18 1	U:45		C	UM
1 601	<u> </u>	,												
		_	00	OTEC		UKAS TESTING	<u> </u>							eet 1 of 3
		3		OIEC		1157	© Co	pyright	2017 SO	COTE	C UK Lim	nited.	All rights rese	rved

roject No			A801	5-18					,	Sample D	Jetails:	Hole N	10		BH6	õ				
	Name		1,19929 29						\longrightarrow	1	1					9 - 9.45				
0 ,	1								ļ	1	!	No		19		Туре		UT		
			IMMI	INGHAI	M				ļ	1	ľ	ID							_	
											'	Spec F	Ref						_	
Shea		tages	- grapl	hical dat	ıta			_	_	_							o fai	ilure poir	ints	
	300											\top	\top				\top	\top		
	250					\perp					3							\perp		
7 2																				
. eg -	200			<u> </u>									_			-		_		
5				!																
Deviator stress(σ1' - σ3') κΡα	150		+ J	2	-	_	_	_			+	_	+			-	+	+		
ator *			/																	
Dev	100		4		+	+	+	+			+	+	+	_		+	+	+		
		1	1																	
	50 +	71	1																	
	0												\perp							
	0 4.0 T		2	4	6	8	10	12	14	16	18	20	22	24	2	26	28	30	ε%	
_	3.5			-		+	_				+	_	-	-+		-	+	+		
 -		۶	1,	2																
6) o	3.0	_	/	+/		+	_				+		+	$\overline{}$		+	+	+	—	
ss rati		/	/	K					_		3									
al stre	2.5	7																		
Principal stress ratio (ত1' / ত3')	2.0 -	Ш																		
ā	_	1 1																		
	1.5 -	_											_			-	_	+		
	1.0		2	4	6	8	10	12	14	16 1	18	20	22	24		26	28	30	ε%	
	420			1			<u> </u>		··		10		_	$\overline{}$						
	:50																			
	400 -				\downarrow															
Ра	380 -					\downarrow	\bot											_		
Jre kl	00.						_													
Pore water pressure kPa	360 -		1	_		_		\rightarrow	_		3		_				_	_		
ater p																				
re wa	340 -		1	2	_	+	+	_	_	_	+	_	+			-	+	+		
Po		1																		
	320 -	7	1	_	+	+	+		_	_	+		+	-		-	+	+	—	
		!																		
	300 		2	4	6	8	10	12 Avia	14		18 lote \	20	22	24		26	28	30		
								Axia	I straın, a	ε% (all plo	ots)									
f SLR	10 1				4			cio							Fig	igure				
Rays	86.0			2			7	1 ×		Pr'	inted:2	:0/07/20)18 10	ı:45			CU	М		
Rev 86.0 Feb18		4							Printed:20/07/2018 10:45 CUM											
Feb	018	1					3		1								shoot	t 2 of 3	,	

Consolidated Undrained Triaxial Compression test with Measurement of Pore Water Pressure (BS1377: Part 8: 1990) - Multistage test on a single specimen Sample Details: Hole No Project No BH6 A8015-18 9 - 9.45 Depth (m BGL) Project Name No 19 UT Туре **IMMINGHAM** ID Spec Ref **Mohr Circles** 200 160 Shear stress kPa 120 80 40 80 120 160 200 240 280 320 400 440 480 520 600 640 Effective stresses kPa **MIT Stress field** 200 Compression stages 2 3 Stage Cell pressure 355 410 520 kPa 160 Initial pwp 300 300 300 kPa 55 Initial σ_3 ' 110 220 kPa 120 $(\sigma_1' - \sigma_3')/2$ Rate of strain 1.80 1.80 1.80 %/hr 80 Failure conditions Maximum effective principal Criterion stress ratio 40 Axial strain 1.57 3.52 6.15 (σ_1' / σ_3') $_f$ 3.142 3.205 3.052 0 68.5 $(\sigma_1' - \sigma_3')_f$ 143.3 264.7 kPa 200 280 320 360 400 323 345 391 kPa u_{f} s' $(\sigma_1' + \sigma_3') / 2 \text{ kPa}$ Cambridge stress field $\sigma_3{'}_f$ 32 65 129 kPa 500 101 208 394 kPa $\sigma_1'_f$ 0.34 0.31 0.34 400 Time to failure 0.9 2.0 3.4 hrs **Shear Strength Parameters** 300 at peak stress ratio $(\sigma_1' - \sigma_3')$ Linear regression 200 2.2 kPa ō Ø' degrees 30.1 Manual re-assessment 100 с' kPa ø' degrees 0 100 200 300 700 800 1000 p' $(\sigma_1' + 2\sigma_3')/3$ kPa Mode of failure Deviator stresses corrected for area change, vertical side drains and 0.595 mm thick rubber membrane(s) Notes: Ref **Figure** SLR8.1 Rev 86.0 **CUM** Printed:20/07/2018 10:45 Feb18 sheet 3 of 3

© Copyright 2017 SOCOTEC UK Limited. All rights reserved



Opinions and interpretations expressed herein are outside the scope of UKAS accreditation. @ Copyright 2016 SOCOTEC UK Limited

SOCOTEC

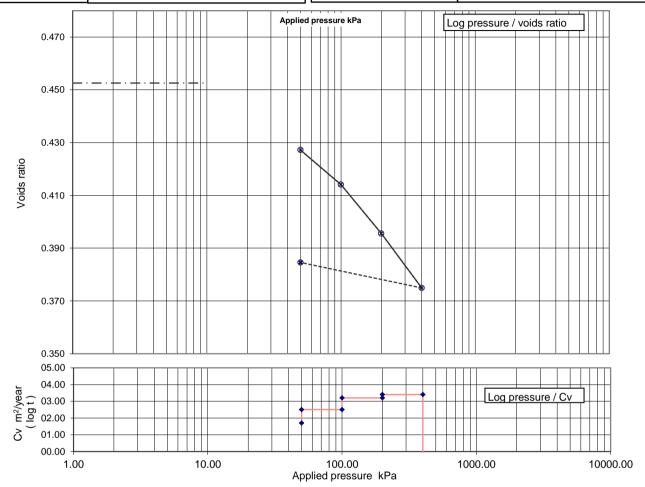
Printed:

02/07/2018 15:26

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation. @ Copyright 2016 SOCOTEC UK Limited

SOCOTEC

Printed:


02/07/2018 15:26

 Sample Details:
 SAMPLE ID:
 Hole No
 BH2

 Sample Depth (m BGL)
 8.00 - 8.45

 Sample Type and No
 UT36

 Specimen Ref

Soil description

Preparation

Index properties

(if available)

Specimen details
Particle density
Diameter
Height
Voids ratio
Moisture content
Bulk density
Dry density
Saturation

Swelling pressure

Notes:

QA Ref SLR 5.3 Rev 2.16

Nov 16

Average temperature for test

Firm brown slightly sandy slightly gravelly CLAY. Gravel is chalk.
Undisturbed

Liquid limit % Plastic limit %

initiai	Finai	1
2.75	assumed	Mg/m3
75	.08	mm
19.10	18.20	mm
0.453	0.385	
16	14	%
2.19	2.27	Mg/m3
1.89	1.99	Mg/m3
97	101	%
2	оС	

not measured

Specimen taken 20

20 mm fro	m base of sample
U K A S TESTING 1157	SOCOTEC

Project No	A8015-18
Project Name	VPI IMMINGHAM

kPa

Applied

Pressure

kPa

50

100

200

400

50

Figure
OED

C۷

m2/year

1.7

2.5

3.2

3.4

mv

m2/MN

0.350

0.183

0.131

0.074

0.020

Voids

ratio

0.4526

0.4272

0.4141

0.3955

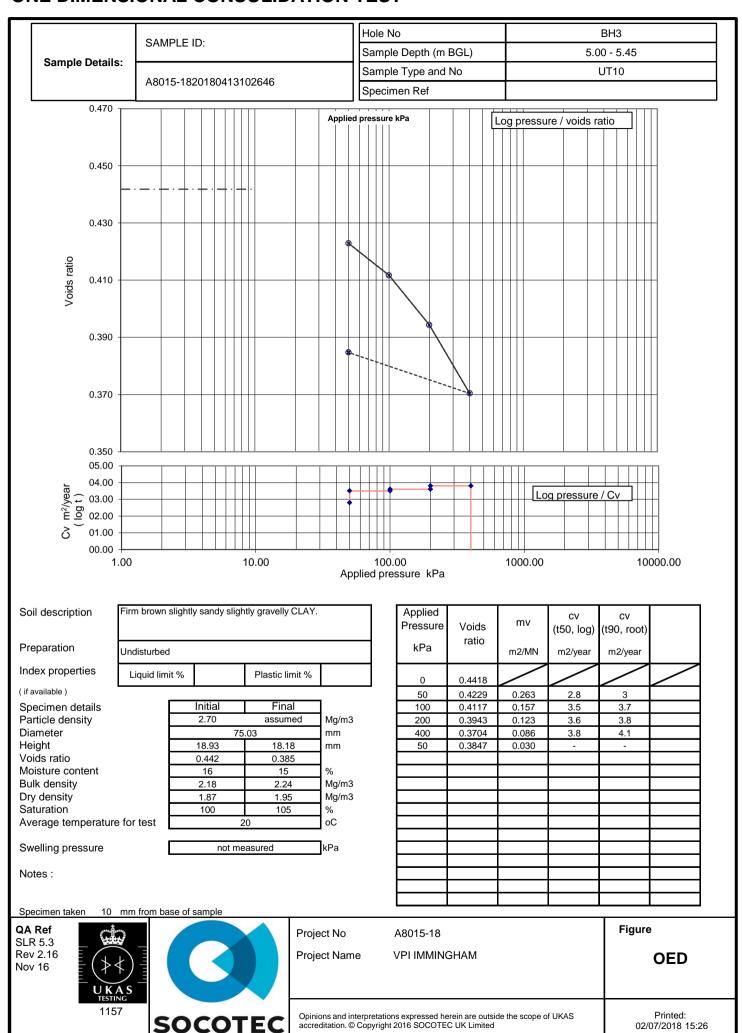
0.3749

0.3846

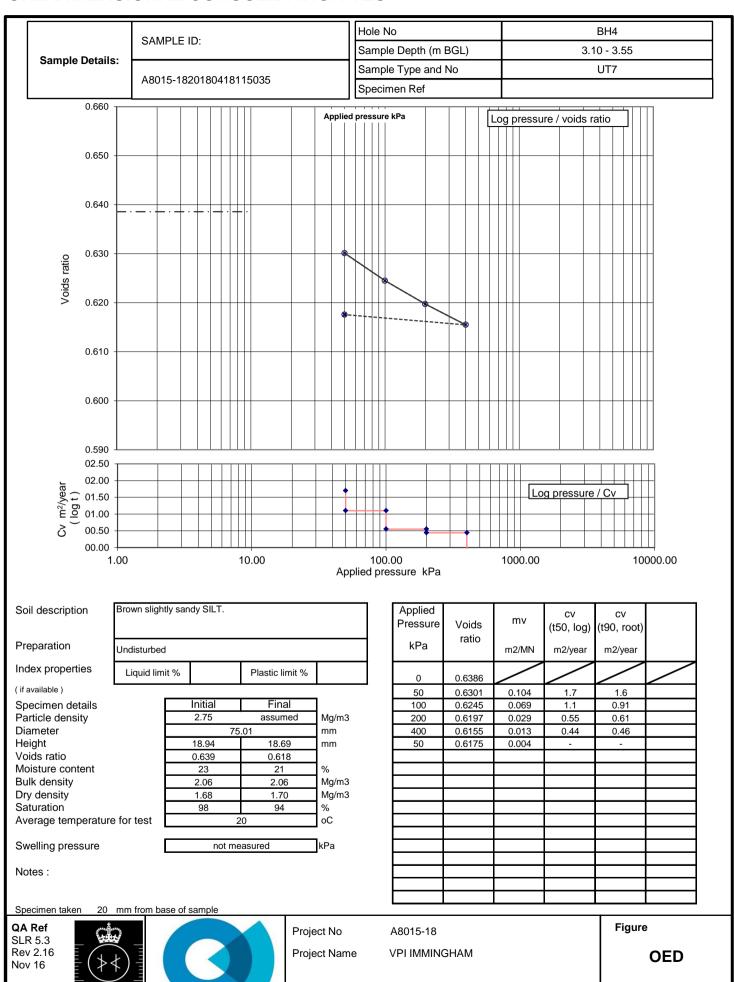
CV

m2/year

1.8


2.7

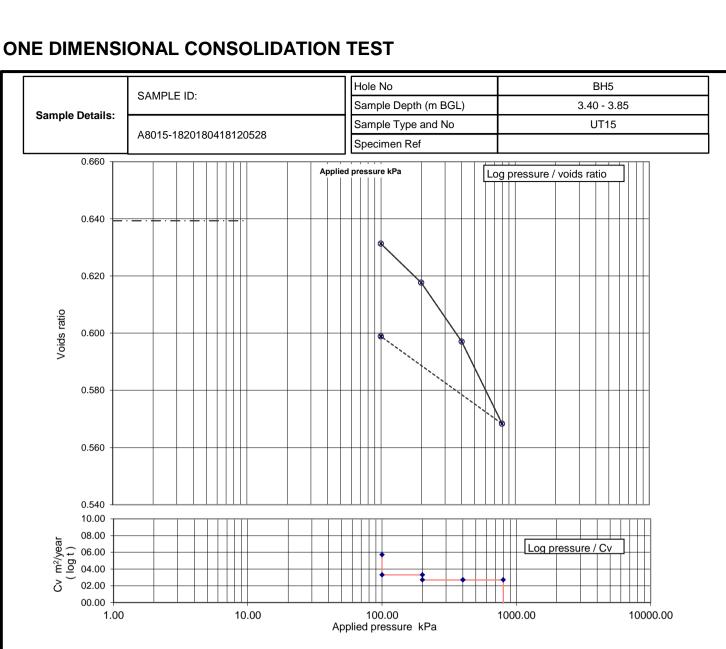
3.3


(t50, log) (t90, root)

7
SOCOTEC
Opinions and interpretations expressed herein are outside the scope of UKAS accreditation. © Copyright 2016 SOCOTEC UK Limited

Printed: 02/07/2018 15:26

02/07/2018 15:26



Opinions and interpretations expressed herein are outside the scope of UKAS accreditation. @ Copyright 2016 SOCOTEC UK Limited

SOCOTEC

Printed:

02/07/2018 15:26

Soil description

Preparation

Index properties

(if available)

Specimen details Particle density Diameter Height Voids ratio Moisture content Bulk density Dry density Saturation

Swelling pressure

Notes:

Average temperature for test

Firm to stiff brown slightly sandy slightly gravelly CLAY.	
Gravel is chalk.	

Undisturbed

Liquid limit % Plastic limit %

Initial	Final	
2.75	assumed	Mg/m3
75	.17	mm
18.97	18.50	mm
0.639	0.599	
23	22	%
2.06	2.10	Mg/m3
1.68	1.72	Mg/m3
99	102	%
2	оС	

>50

Specimen taken 10 mm from base of sample

QA Ref SLR 5.3 Rev 2.16 Nov 16 UKAS TESTING		
	SLR 5.3 Rev 2.16	

him him	
	SOCOTEC

Project No	A8015-18
Project Name	VPI IMMII

kPa

5-18	Figure
MMINGHAM	

C۷

m2/year

5.7

3.3

2.7

mv

m2/MN

0.098

0.084

0.064

0.045

0.028

Voids

ratio

0.6393

0.6313

0.6176

0.5970

0.5683

0.5989

CV

m2/year

6.1

1.8

2.9

(t50, log) (t90, root)

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation. © Copyright 2016 SOCOTEC UK Limited

Applied

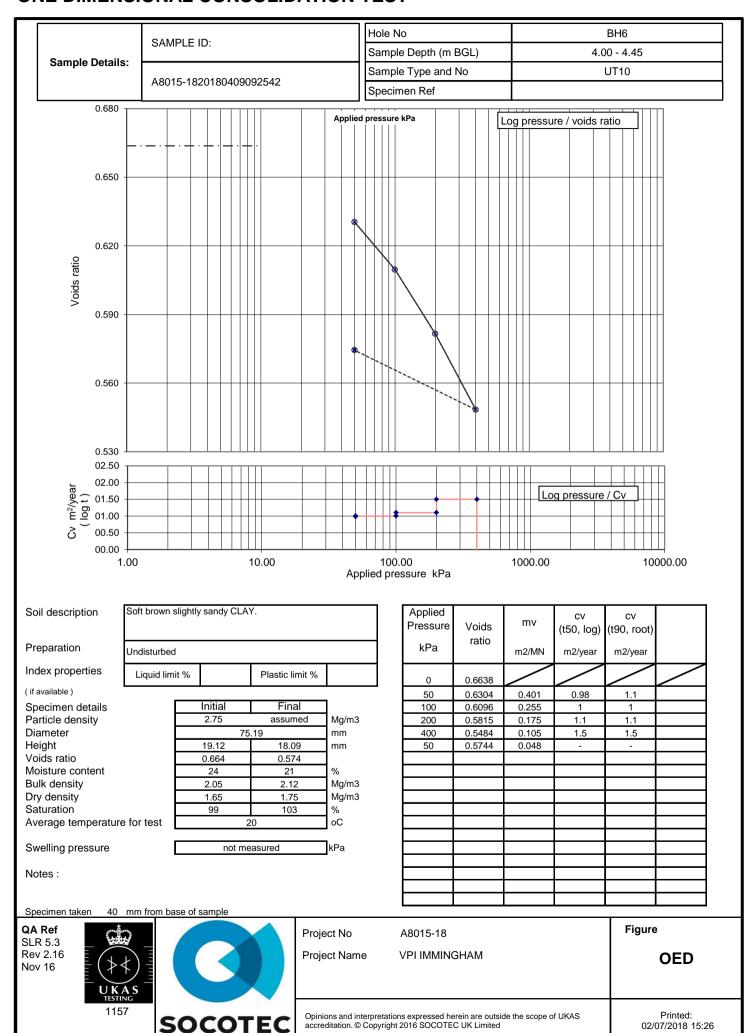
Pressure

kPa

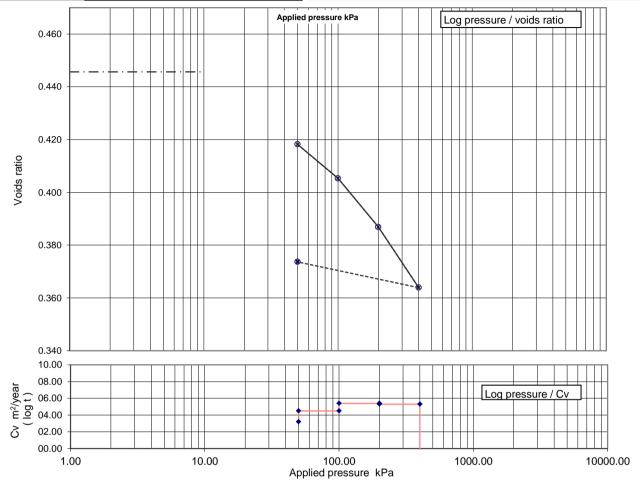
50

100

200


400

800


100

Printed: 02/07/2018 15:26

OED

BH6 SAMPLE ID: Sample Depth (m BGL) 9.00 - 9.45 Sample Details: UT19 Sample Type and No A8015-1820180409092658 Specimen Ref

Soil description

Preparation

Index properties

(if available)

Specimen details Particle density Diameter Height Voids ratio Moisture content Bulk density Dry density Saturation Average temperature for test

Initial Final 2.65 assumed Mg/m3 75.04 mm 18.96 18.02 mm 0.446 0.374 17 15 % 2.14 2.21 Mg/m3 1.83 1.93 Mg/m3 105 % 98

not measured

Plastic limit %

Firm brown slightly sandy slightly gravelly CLAY. Gravel is

Swelling pressure

Notes:

chalk.

Undisturbed

Liquid limit %

Specimen taken	10	mm from base of sample

QA Ref SLR 5.3 Rev 2.16 Nov 16	U KAS TESTING

10	ili base di sample
	SOCOTEC

Project No	A8
Project Name	VF

οС

kPa

8015-18 PI IMMINGHAM

Applied

Pressure

kPa

50

100

200

400

50

Figure

CV

m2/year

3.2

4.5

5.4

mν

m2/MN

0.380

0.182

0.131

0.083

0.020

Voids

ratio

0.4456

0.4182

0.4053

0.3868

0.3639

0.3737

CV

m2/year

3.3

4.8

5.7

(t50, log) (t90, root)

OED

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation. o Copyright 2016 SOCOTEC UK Limited

Printed: 02/07/2018 15:26

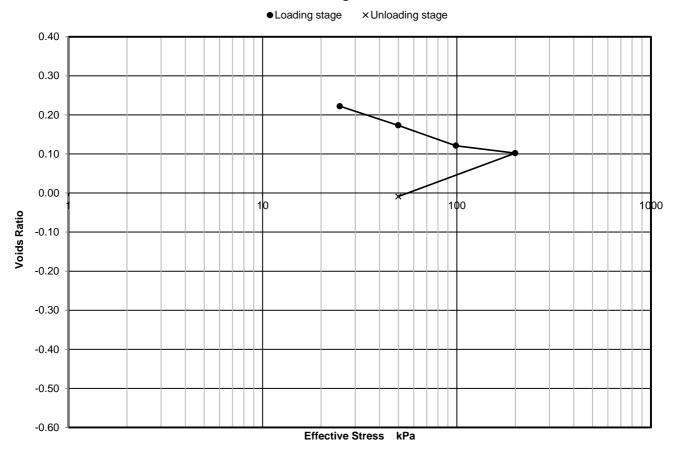
		SAMPLE ID:		Hole No				BH2	
Sample		SAIVIPLE ID.		Sample Depth (m BGL) Sample Type and No			1.20 - 1.65		
	Details:							UT7	
		A8015-1820180413011428	A8015-1820180413011428 Specimen Ref						
L		Firm brown slightly sandy slightly	gravelly CL						
	Description					•			
	Test Method	BS 1377: Part 6: 1990, clause 3.	7			Da	ate of test	26/0	06/2018
PE	CIMEN DETAILS	Type of sample Preparation	Undisturbe	ed					
		Height Diameter Bulk density Moisture content Dry density Voids Ratio Degree of Saturation Particle density				Initial 19.32 71.94 2.08 18.0 1.76 0.502 95 2.65	3.52 23.0 2.67	mm mm Mg/m3 % Mg/m3	Assumed
WI	ELLING	Swelling pressure Water taken in during swell	ling stage					kPa ml	Accumod
	RATION k pressure	Cell pressure increments Pressure differential Final diaphragm pressure Final back pressure Final pore pressure ratio, δ Water taken in during satur Voids ratio at end of satura	ration stage				50 10 460 443 1.00 28.9 0.500	kPa kPa kPa kPa ml	
10	NSOLIDATION STA	AGES				'		-	
	Type of drainage				n (if applica	able)		7	
	Type of loading	Free strain	Diameter			mm			
	PWP location	Centre base		Material Method of	formation				₫
	Stage number		1	2	3	4	5	1	_
	Diaphragm press	ure	475	500	550	650	500		kPa
	Back pressure		450	450	450	450	450		kPa
	Initial Pore press	ure built up	459	476	486	493	362		kPa
	Final pore pressu		450	450	451	450	450		kPa
		actual) at end of stage	25	50	99	200	50		kPa
	Voids at start	-	0.500	0.173	0.173	0.121	0.102		
	Voids at end		0.222	0.173	0.121	0.102	-0.009		
	PWP dissipation		100	100	97	100	100		%
	Settlement in sta	_	0.37	0.24	0.17	0.29	-0.12		mm
	Volume change is	n stage (water out = +v	· —	2.6	2.7	1.0	5.8	ļ	ml
	Mv		7.4	1.6	0.9	0.17	-0.671	<u> </u>	m2/MN
	Cro		400	1.5	1.4	0.53	0	0	m2/year
	Csec		0	0	0	0			_
	Cro method		Settlement, root time, t90		Settlement, root time, t90	Settlement, root time, t90			
	Average stage te	mperature	20.6	20.6	21.5	21.0	19.6		оС
	Remarks								
_D	Ref 3, 5/9 2.7		Project No Project Name	A801 VPH	5-18 MMINGHAN	Л		Figur	HC
		SOCOTEC	Test carried out on SOCOTEC UK L	outside the scope imited	of UKAS accre	ditation. © Copy	right 2017	31/0	Printed: 07/2018 12:23

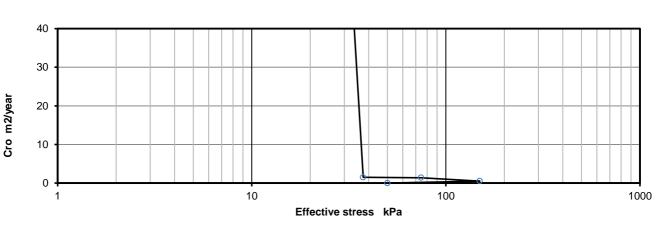
		SAMPLE ID:		Hole No	BH2		
	Sample					20 - 1.65	
	Details:	A8015-1820180413011428		Sample Type and No	UT7		
		7.0010-102010041301	20	Specimen Ref			
	0.60 0.50		Voids Ratio v •Loading	Log Effective Stress stage ×Unloading stage	- Fatio		
	0.40						
	0.30						
	0.20						
olds	0.10						
	-0.10		10	100	0	1000	
	0.10						
	-0.20						
	-0.30						
-	-0.40			fective Stress kPa			
	400						
	300						
cro m⊿year	200 -						
0	100						
	0 1		10 Ef	100 fective stress kPa	8	1000	
		ed at effective stress at the	end of the stage.				
A Re t D 3, v 2.7	f 5/9		Project No Project Na		Fi	gure HC	
		SOCOTE	Test carried o	out outside the scope of UKAS accreditati K Limited	on. © Copyright 2017	Printed: 31/07/2018 12:23	

		SAMPLE ID:		Hole No				BH4	
	Sample	SAMPLE ID:		Sample Dep	oth (m BGL)		2.0	00 - 2.45	
	Details:			Sample Type and No			UT4		
/		A8015-1820180418115015	A8015-1820180418115015						
L	Specimen Description	I		Specimen R					
	-	D0.4077 D +0.4000 -1 -0.1				1 p.		200/	00/0040
	Test Method	BS 1377: Part 6: 1990, clause 3.] Da	ate of test	26/0	06/2018
3PE	ECIMEN DETAILS	Type of sample Preparation	Undisturb	ped					
		Height Diameter Bulk density Moisture content Dry density Voids Ratio Degree of Saturation				Initial 18.86 72.13 2.04 22.0 1.67 0.585 100	3.32 25.0 2.41	mm mm Mg/m3 % Mg/m3	
SWI	ELLING	Particle density Swelling pressure Water taken in during swell	ing stage			2.65		Mg/m3 kPa ml	Assumed
	URATION k pressure	Cell pressure increments Pressure differential Final diaphragm pressure Final back pressure Final pore pressure ratio, δ Water taken in during satur Voids ratio at end of satura	u / δσ ation stage				50 10 310 298 0.99 27.2 0.560	kPa kPa kPa kPa ml	
10	NSOLIDATION STA	GES	iion stage				0.500	J	
	Type of drainage	Radial outwards			in (if applica	able)		7	
	Type of loading	Free strain	Diameter			mm		_	
	PWP location	Centre base		Material Method of	formation				_
	Stage number		1	2	3	4	5	I	
	Diaphragm pressi	ıre	325	350	400	500	350		kPa
	Back pressure		300	300	300	300	300		kPa
	Initial Pore pressu	ıre built up	315	321	335	330	255		kPa
	Final pore pressu		300	300	300	300	294		kPa
		actual) at end of stage	25	50	100	200	56		kPa
	Voids at start	. •	0.560	0.312	0.312	0.235	0.182		Ī
	Voids at end		0.388	0.312	0.235	0.182	0.102		
	PWP dissipation		100	100	100	100	86		%
	Settlement in stag	ge	0.00	0.11	0.26	0.21	-0.09		mm
	Volume change in	n stage (water out = +ve	·	3.7	3.7	2.6	3.9		ml
	Mv		4.4	2.2	1.2	0.43	-0.471	<u> </u>	m2/MN
	Cro		0	36	8.6	7	0	0	m2/year
	Csec Cro method		Settlement	O , Settlement,	0 Settlement,	0 Settlement,			-
			root time, t9	o root time, t90	root time, t90	root time, t90	04.0		
	Average stage ter Remarks	nperature	21.1	20.8	20.3	21.1	21.8	<u> </u>	оС
	IVEIIIQINS								
LD	Ref 3, 5/9 2.7		Project No Project Nam	A801 ie VPH	5-18 MMINGHAN	Л		Figur	HC
		SOCOTEC	Test carried ou SOCOTEC UK	t outside the scope Limited	e of UKAS accre	editation. © Copy	right 2017	31/0	Printed: 07/2018 12:23

	SAMPLE ID:	11-	Hole No		H4
Sample			Sample Depth (m BGL)		- 2.45
Details:	A8015-1820180418115015	: I ⊢	Sample Type and No	U	IT4
			Specimen Ref		
aphical data	Voi	ds Ratio v I	og Effective Stress		
	VOI	●Loading stag	_		
0.60		- Loading Stag	A Officiality Stage		
0.55					
0.50			Initial voids r	ratio	
0.45					
0.40					
0.35					
0.30					
0.23			•		
0.15					
0.10		10	100		100
ı			ive Stress kPa		1000
40					
30 -					
20					
0 1		10 Effect	100	0	1000
	olotted at effective stress at the end at the average effective stress during				
Ref		Project No	A8015-18		Figure
9 3, 5/9 2.7		Project Name	VPI IMMINGHAM		НС
	SOCOTEC	Test carried out ou SOCOTEC UK Lin	stside the scope of UKAS accreditation nited	n. © Copyright 2017	Printed: 31/07/2018 12:23

Determination of consolidation properties using a hydraulic cell BS 1377: Part 6: 1990

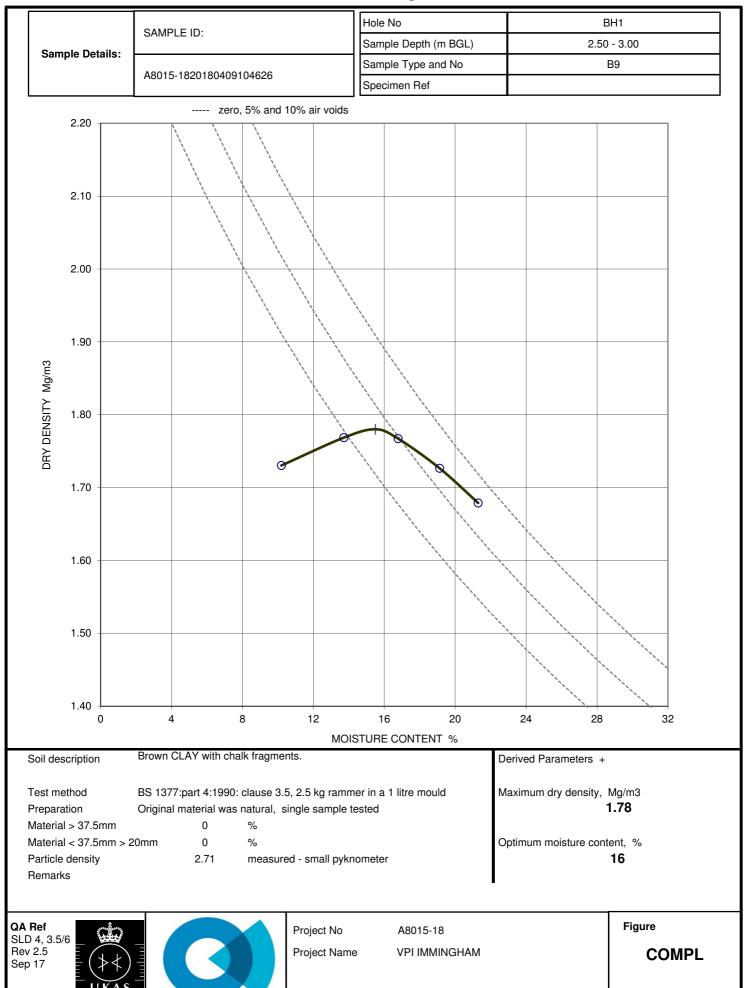

- 1		SAMPLE ID:		<u> [</u>	Hole No				BH5	
	Sample	SAMPLE ID:			Sample Dep	th (m BGL)		1.2	20 - 1.65	
Details:					Sample Typ	e and No			UT7	
		A8015-18201804181204	l 19	- ⊢	Specimen R					
L		Orticle from horses of ability	b P		•	<u> </u>				
	Specimen Description	Soft to firm brown slightly s	andy sii	gntiy gravei	IIY CLAY.					
	Test Method	BS 1377: Part 6: 1990, cla	use 3.7				Da	ite of test	11/0	07/2018
PE	CIMEN DETAILS	Type of sample Preparation		Undisturbe	d					
		Пераганоп	ļ				Initial	Final		
		Height					18.55	FIIIdI	mm	
		Diameter Bulk density					72.06 2.24	4.58	mm Mg/m3	
		Moisture content					15.0	20.0	%	
		Dry density					1.95	4.02	Mg/m3	
		Voids Ratio					0.359		_Ivig/1115	
		Degree of Saturation					111		%	
		Particle density					2.65		Mg/m3	Assumed
WE	ELLING	Swelling pressure							kPa	
		Water taken in during	g swellin	g stage					ml	
	URATION pressure	Cell pressure increme	onto					50	kPa	
aun	piessuie	Pressure differential	CIIIS					10	kPa	
		Final diaphragm pres	curo					360	kPa	
			sure					341	kPa	
		Final back pressure	otio Su	/ Sa				0.96	KFa	
		Final pore pressure ra Water taken in during						22.3	-l _{ml}	
		Voids ratio at end of		-				0.290	┨''''	
· O N	ISOLIDATION STA		Saturatio	n stage			ı	0.290	J	
OIN	Type of drainage	Radial outwards			Contro droi	n (if applica	abla)			
	• • • • • • • • • • • • • • • • • • • •	Free strain				ii (ii appiica	ibie)		٦	
	Type of loading PWP location				Diameter				mm	
	PWP location	Centre base			Material Method of f	ormation				
	Ota wa washan		ŀ	4	2	2	4		1	_
	Stage number Diaphragm pressi	uro		1 375	2 400	3 450	550	5 400		⊢
							330			IVDa
		uie					350			kPa
	Back pressure			350	350	350	350 422	350		kPa
	Initial Pore pressu	ure built up		350 356	350 369	350 385	422	350 246		kPa kPa
	Initial Pore pressu	ure built up re		350 356 350	350 369 350	350 385 350	422 350	350 246 350		kPa kPa kPa
	Initial Pore pressu Final pore pressu Effective stress (a	ure built up		350 356 350 25	350 369 350 50	350 385 350 100	422 350 200	350 246 350 50		kPa kPa
	Initial Pore pressu Final pore pressu Effective stress (a Voids at start	ure built up re		350 356 350 25 0.290	350 369 350 50 0.145	350 385 350 100 0.145	422 350 200 0.093	350 246 350 50 0.041		kPa kPa kPa
	Initial Pore pressu Final pore pressu Effective stress (a Voids at start Voids at end	ure built up re		350 356 350 25 0.290 0.215	350 369 350 50 0.145 0.145	350 385 350 100 0.145 0.093	422 350 200 0.093 0.041	350 246 350 50 0.041 -0.340		kPa kPa kPa kPa kPa
	Initial Pore pressu Final pore pressu Effective stress (a Voids at start Voids at end PWP dissipation	ure built up re actual) at end of stage		350 356 350 25 0.290 0.215 100	350 369 350 50 0.145 0.145 100	350 385 350 100 0.145 0.093 100	422 350 200 0.093 0.041 100	350 246 350 50 0.041 -0.340 100		kPa kPa kPa kPa kPa
	Initial Pore pressu Final pore pressu Effective stress (a Voids at start Voids at end PWP dissipation Settlement in stag	ure built up re actual) at end of stage ge		350 356 350 25 0.290 0.215 100 0.01	350 369 350 50 0.145 0.145 100 0.19	350 385 350 100 0.145 0.093 100 0.22	422 350 200 0.093 0.041 100 0.22	350 246 350 50 0.041 -0.340 100 -0.62		kPa kPa kPa kPa kPa %
	Initial Pore pressu Final pore pressu Effective stress (a Voids at start Voids at end PWP dissipation Settlement in stag Volume change in	ure built up re actual) at end of stage ge	out = +ve)	350 356 350 25 0.290 0.215 100 0.01 4.2	350 369 350 50 0.145 0.145 100 0.19 3.9	350 385 350 100 0.145 0.093 100 0.22 2.9	422 350 200 0.093 0.041 100 0.22 2.9	350 246 350 50 0.041 -0.340 100 -0.62 21.2		kPa kPa kPa kPa % mm ml
	Initial Pore pressu Final pore pressu Effective stress (a Voids at start Voids at end PWP dissipation Settlement in stag Volume change in Mv	ure built up re actual) at end of stage ge	out = +ve)	350 356 350 25 0.290 0.215 100 0.01 4.2 2.3	350 369 350 50 0.145 0.145 100 0.19 3.9 2.3	350 385 350 100 0.145 0.093 100 0.22 2.9 0.91	422 350 200 0.093 0.041 100 0.22 2.9 0.48	350 246 350 50 0.041 -0.340 100 -0.62 21.2 -2.44		kPa kPa kPa kPa kPa mm ml m2/MN
	Initial Pore pressu Final pore pressu Effective stress (a Voids at start Voids at end PWP dissipation Settlement in stag Volume change in Mv Cro	ure built up re actual) at end of stage ge	out = +ve)	350 356 350 25 0.290 0.215 100 0.01 4.2 2.3 1.3	350 369 350 50 0.145 0.145 100 0.19 3.9 2.3	350 385 350 100 0.145 0.093 100 0.22 2.9 0.91	422 350 200 0.093 0.041 100 0.22 2.9 0.48 2.7	350 246 350 50 0.041 -0.340 100 -0.62 21.2	0	kPa kPa kPa kPa % mm ml
	Initial Pore pressu Final pore pressu Effective stress (a Voids at start Voids at end PWP dissipation Settlement in stag Volume change in Mv Cro Csec	ure built up re actual) at end of stage ge	out = +ve)	350 356 350 25 0.290 0.215 100 0.01 4.2 2.3 1.3 0	350 369 350 50 0.145 0.145 100 0.19 3.9 2.3 29	350 385 350 100 0.145 0.093 100 0.22 2.9 0.91 19	422 350 200 0.093 0.041 100 0.22 2.9 0.48 2.7 0	350 246 350 50 0.041 -0.340 100 -0.62 21.2 -2.44	0	kPa kPa kPa kPa % mm ml m2/MN
	Initial Pore pressu Final pore pressu Effective stress (a Voids at start Voids at end PWP dissipation Settlement in stag Volume change in Mv Cro	ure built up re actual) at end of stage ge	out = +ve)	350 356 350 25 0.290 0.215 100 0.01 4.2 2.3 1.3	350 369 350 50 0.145 0.145 100 0.19 3.9 2.3	350 385 350 100 0.145 0.093 100 0.22 2.9 0.91	422 350 200 0.093 0.041 100 0.22 2.9 0.48 2.7	350 246 350 50 0.041 -0.340 100 -0.62 21.2 -2.44	0	kPa kPa kPa kPa kPa mm ml m2/MN
	Initial Pore pressu Final pore pressu Effective stress (a Voids at start Voids at end PWP dissipation Settlement in stag Volume change in Mv Cro Csec	ure built up re actual) at end of stage ge n stage (water o	out = +ve)	350 356 350 25 0.290 0.215 100 0.01 4.2 2.3 1.3 0	350 369 350 50 0.145 0.145 100 0.19 3.9 2.3 29 0	350 385 350 100 0.145 0.093 100 0.22 2.9 0.91 19 0	422 350 200 0.093 0.041 100 0.22 2.9 0.48 2.7 0	350 246 350 50 0.041 -0.340 100 -0.62 21.2 -2.44	0	kPa kPa kPa kPa % mm ml m2/MN
	Initial Pore pressu Final pore pressu Effective stress (a Voids at start Voids at end PWP dissipation Settlement in stag Volume change in Mv Cro Csec Cro method	ure built up re actual) at end of stage ge n stage (water o	out = +ve)	350 356 350 25 0.290 0.215 100 0.01 4.2 2.3 1.3 0 Settlement, root time, 190	350 369 350 50 0.145 0.145 100 0.19 3.9 2.3 29 0 Settlement, root time, 190	350 385 350 100 0.145 0.093 100 0.22 2.9 0.91 19 0 Settlement, root time, 190	422 350 200 0.093 0.041 100 0.22 2.9 0.48 2.7 0 Settlement, root time, t90	350 246 350 50 0.041 -0.340 100 -0.62 21.2 -2.44 0	0	kPa kPa kPa kPa % mm ml m2/MN m2/year
ı A	Initial Pore pressu Final pore pressu Effective stress (a Voids at start Voids at end PWP dissipation Settlement in stag Volume change ir Mv Cro Csec Cro method Average stage ter Remarks	ure built up re actual) at end of stage ge n stage (water o		350 356 350 25 0.290 0.215 100 0.01 4.2 2.3 1.3 0 Settlement, root time, 190 20.3	350 369 350 50 0.145 0.145 100 0.19 3.9 2.3 29 0 Settlement, root time, 190 20.1	350 385 350 100 0.145 0.093 100 0.22 2.9 0.91 19 0 Settlement, root time, 190 20.3	422 350 200 0.093 0.041 100 0.22 2.9 0.48 2.7 0 Settlement, root time, t90	350 246 350 50 0.041 -0.340 100 -0.62 21.2 -2.44 0		kPa kPa kPa kPa % mm ml m2/MN m2/year
∂A F	Initial Pore pressu Final pore pressu Effective stress (a Voids at start Voids at end PWP dissipation Settlement in stag Volume change ir Mv Cro Csec Cro method Average stage ter Remarks	ure built up re actual) at end of stage ge n stage (water of		350 356 350 25 0.290 0.215 100 0.01 4.2 2.3 1.3 0 Settlement, root time, 190	350 369 350 50 0.145 0.145 100 0.19 3.9 2.3 29 0 Settlement, root time, 190	350 385 350 100 0.145 0.093 100 0.22 2.9 0.91 19 0 Settlement, root time, 190 20.3	422 350 200 0.093 0.041 100 0.22 2.9 0.48 2.7 0 Settlement, root time, t90	350 246 350 50 0.041 -0.340 100 -0.62 21.2 -2.44 0	O Figur	kPa kPa kPa kPa % mm ml m2/MN m2/year
LD	Initial Pore pressu Final pore pressu Effective stress (a Voids at start Voids at end PWP dissipation Settlement in stag Volume change ir Mv Cro Csec Cro method Average stage ter Remarks Ref 3, 5/9	ure built up re actual) at end of stage ge n stage (water of		350 356 350 25 0.290 0.215 100 0.01 4.2 2.3 1.3 0 Settlement, root time, 190 20.3	350 369 350 50 0.145 0.145 100 0.19 3.9 2.3 29 0 Settlement, root time, 190 20.1	350 385 350 100 0.145 0.093 100 0.22 2.9 0.91 19 0 Settlement, root time, 190 20.3	422 350 200 0.093 0.041 100 0.22 2.9 0.48 2.7 0 Settlement, root time, t90 21.3	350 246 350 50 0.041 -0.340 100 -0.62 21.2 -2.44 0		kPa kPa kPa kPa % mm ml m2/MN m2/year
LD	Initial Pore pressu Final pore pressu Effective stress (a Voids at start Voids at end PWP dissipation Settlement in stag Volume change ir Mv Cro Csec Cro method Average stage ter Remarks Ref 3, 5/9	ure built up re actual) at end of stage ge n stage (water of		350 356 350 25 0.290 0.215 100 0.01 4.2 2.3 1.3 0 Settlement, root time, 190 20.3	350 369 350 50 0.145 0.145 100 0.19 3.9 2.3 29 0 Settlement, root time, 190 20.1	350 385 350 100 0.145 0.093 100 0.22 2.9 0.91 19 0 Settlement, root time, 190 20.3	422 350 200 0.093 0.041 100 0.22 2.9 0.48 2.7 0 Settlement, root time, t90 21.3	350 246 350 50 0.041 -0.340 100 -0.62 21.2 -2.44 0		kPa kPa kPa kPa % mm ml m2/MN m2/year
	Initial Pore pressu Final pore pressu Effective stress (a Voids at start Voids at end PWP dissipation Settlement in stag Volume change ir Mv Cro Csec Cro method Average stage ter Remarks Ref 3, 5/9	ure built up re actual) at end of stage ge n stage (water o		350 356 350 25 0.290 0.215 100 0.01 4.2 2.3 1.3 0 Settlement, root time, 190 20.3	350 369 350 50 0.145 0.145 100 0.19 3.9 2.3 29 0 Settlement, root time, 190 20.1	350 385 350 100 0.145 0.093 100 0.22 2.9 0.91 19 0 Settlement, root time, 190 20.3	422 350 200 0.093 0.041 100 0.22 2.9 0.48 2.7 0 Settlement, root time, t90 21.3	350 246 350 50 0.041 -0.340 100 -0.62 21.2 -2.44 0		kPa kPa kPa kPa % mm ml m2/MN m2/year


Determination of consolidation properties using a hydraulic cell BS 1377: Part 6: 1990

	SAMPLE ID:	Hole No	BH5
Sample		Sample Depth (m BGL)	1.20 - 1.65
Details:	A8015-1820180418120419	Sample Type and No	UT7
		Specimen Ref	

Graphical data

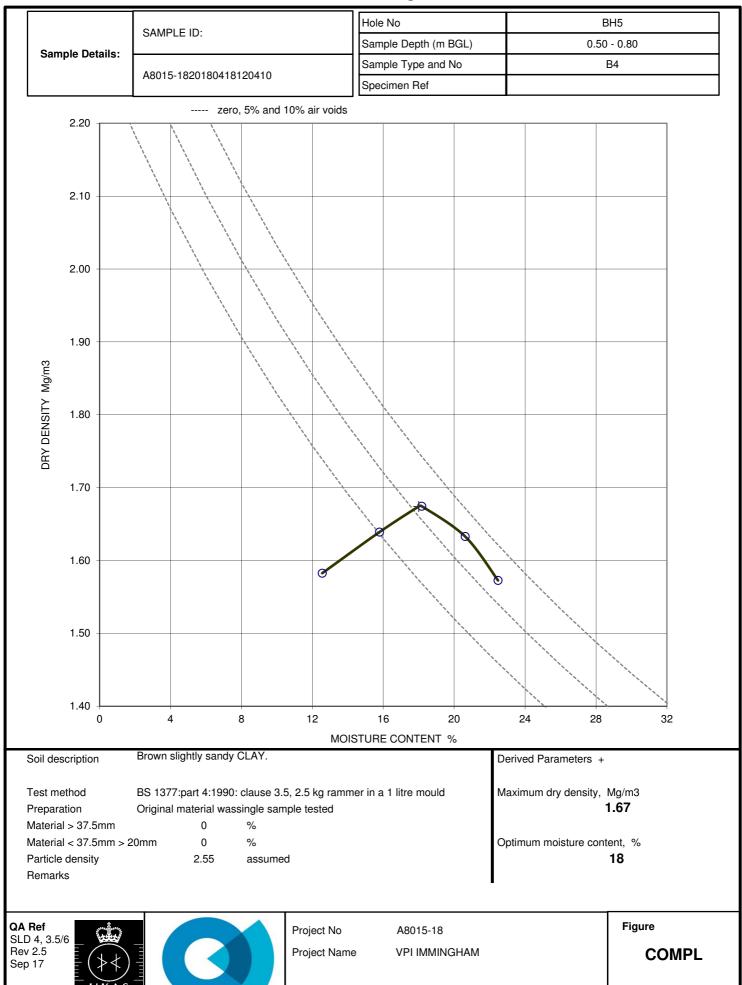
Voids Ratio v Log Effective Stress


Voids ratio plotted at effective stress at the end of the stage. Cro plotted at the average effective stress during the stage.

QA Ref
SLD 3, 5/9
Rev 2.7

Project No	A8015-18	Figure	
Project Name	VPI IMMINGHAM	НС	

Test carried out outside the scope of UKAS accreditation. $\ \ \,$ Copyright 2017 SOCOTEC UK Limited Printed: 31/07/2018 12:23

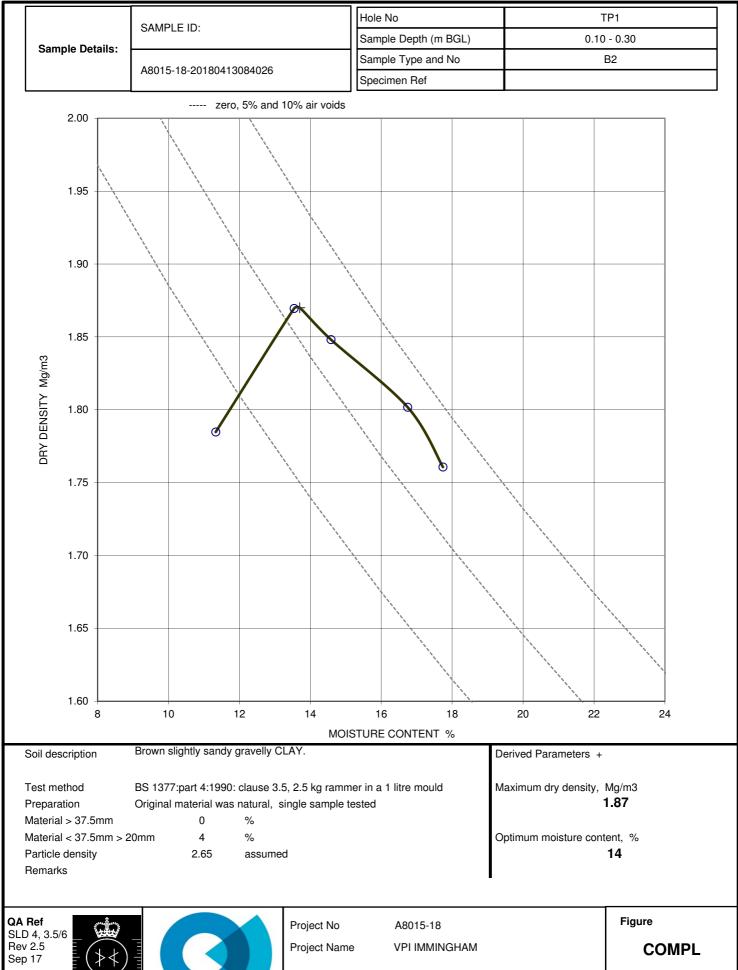


Opinions and interpretations expressed herein are outside the scope of UKAS accreditation. © Copyright 2017 SOCOTEC UK Limited

SOCOTEC

Printed:

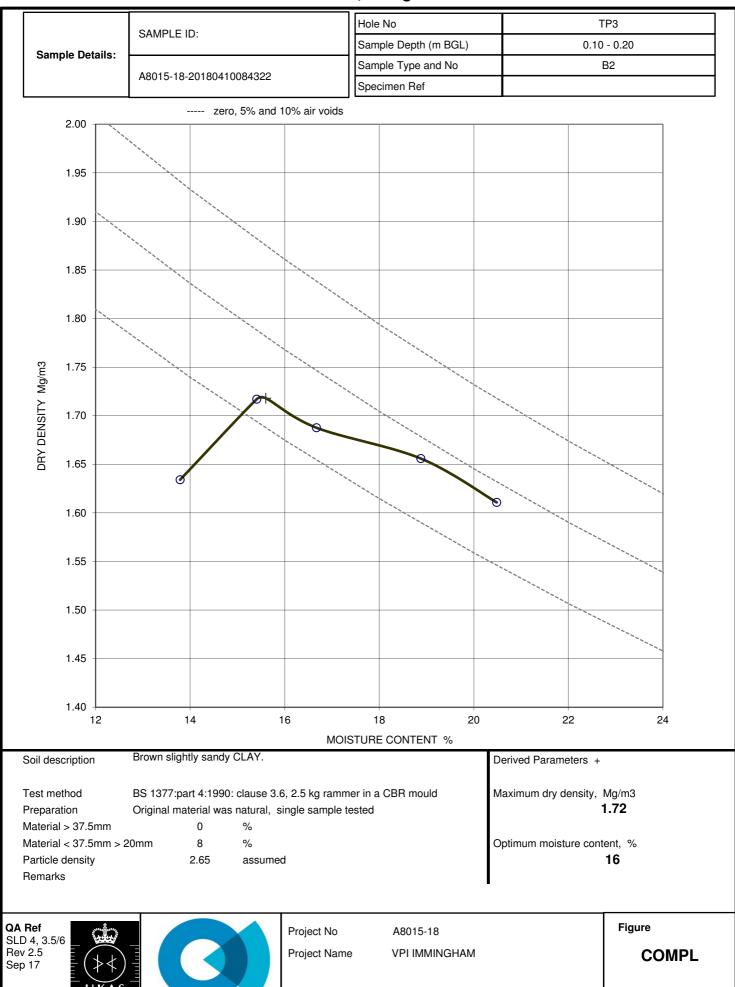
02/07/2018 15:44



Opinions and interpretations expressed herein are outside the scope of UKAS accreditation. © Copyright 2017 SOCOTEC UK Limited

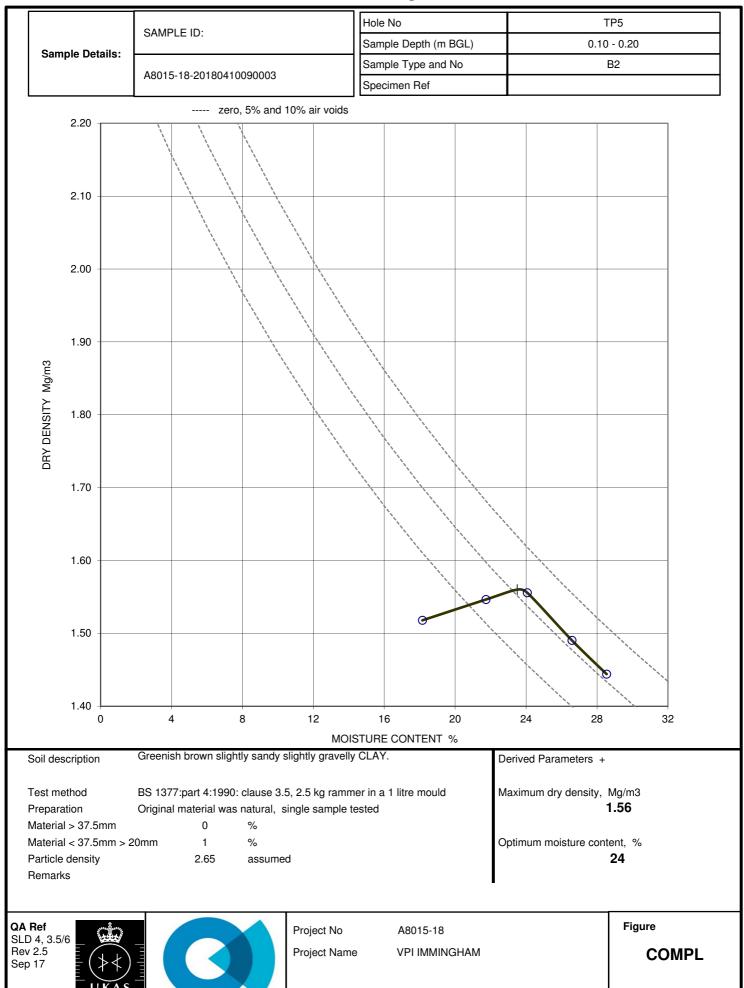
SOCOTEC

Printed:


02/07/2018 15:45

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation. © Copyright 2017 SOCOTEC UK Limited

Printed: 02/07/2018 15:45

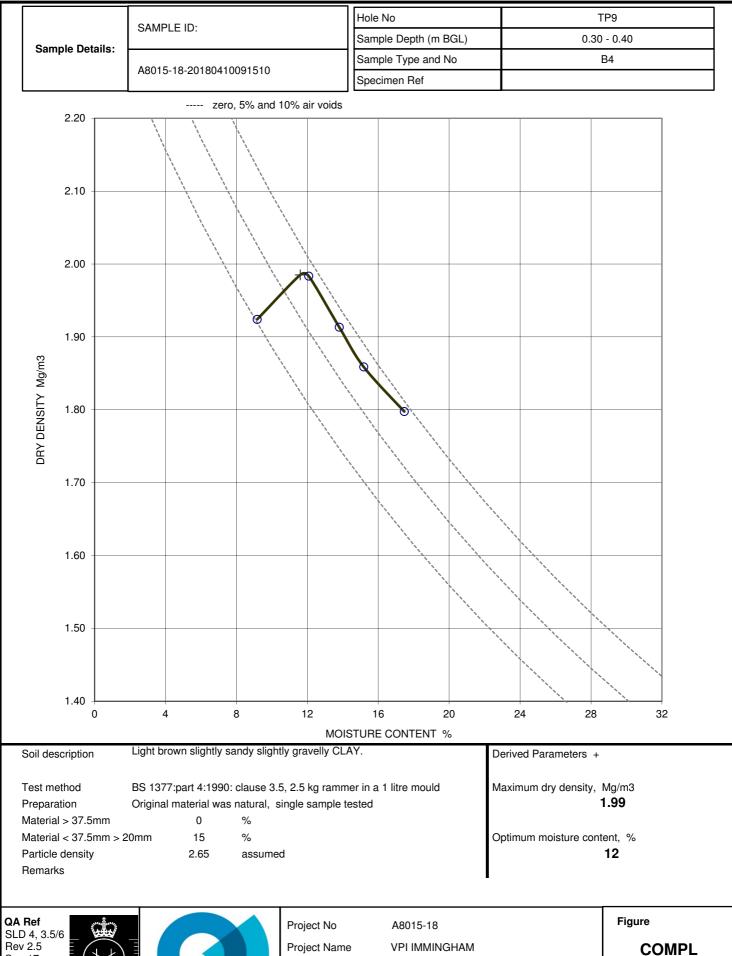


Opinions and interpretations expressed herein are outside the scope of UKAS accreditation. © Copyright 2017 SOCOTEC UK Limited

SOCOTEC

Printed:

05/07/2018 11:42



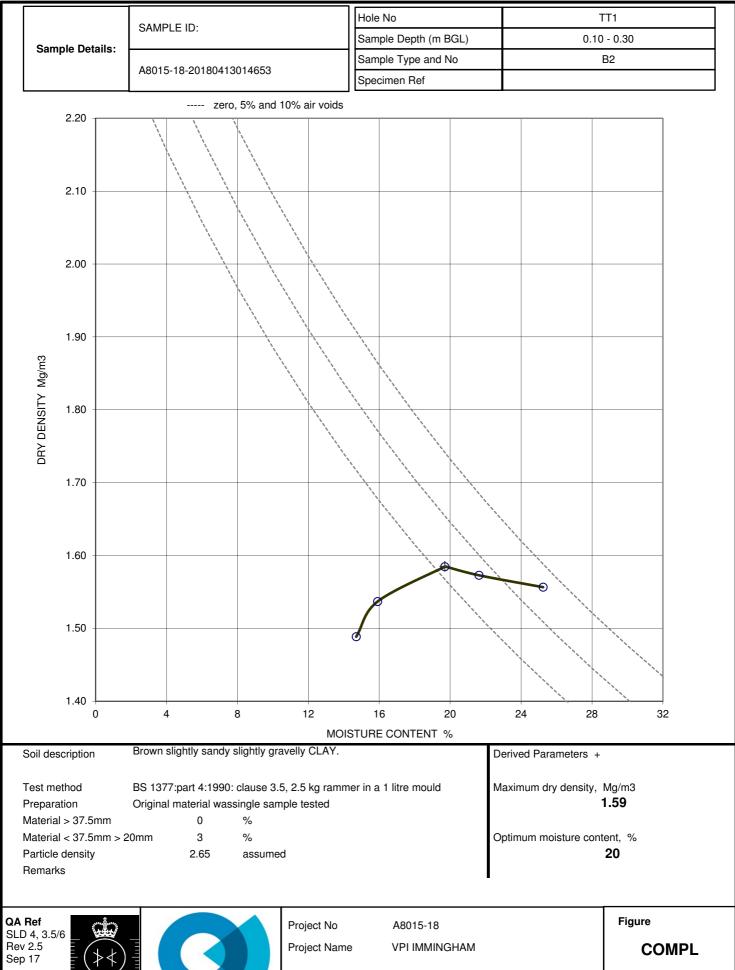
Opinions and interpretations expressed herein are outside the scope of UKAS accreditation. © Copyright 2017 SOCOTEC UK Limited

SOCOTEC

Printed:

02/07/2018 15:46

Sep 17

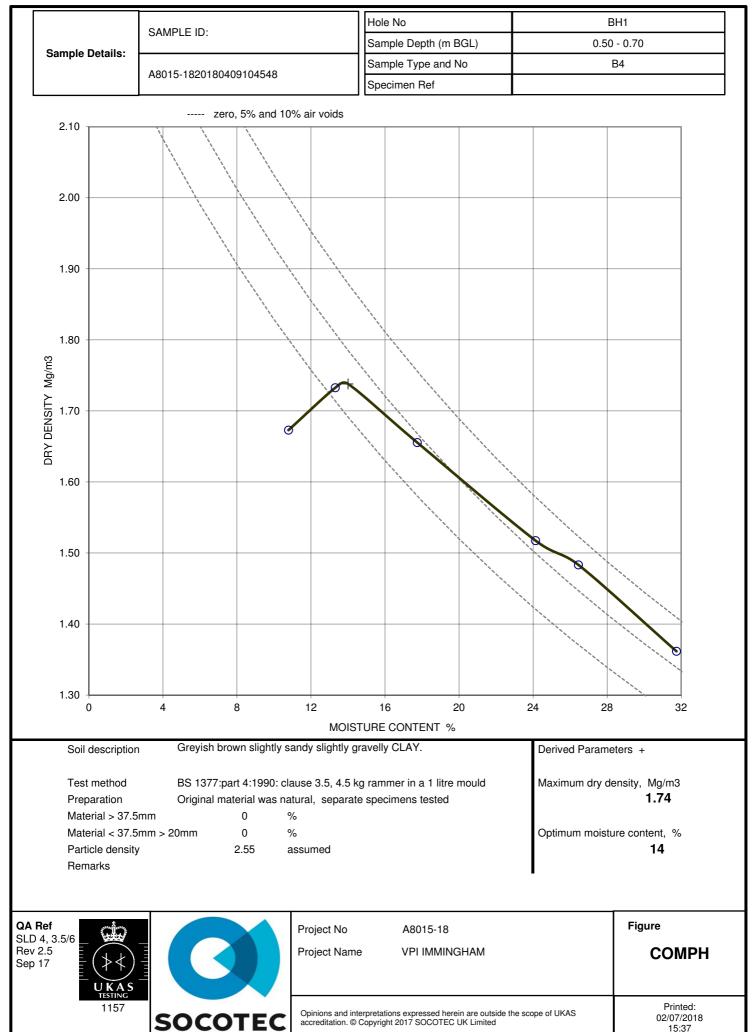


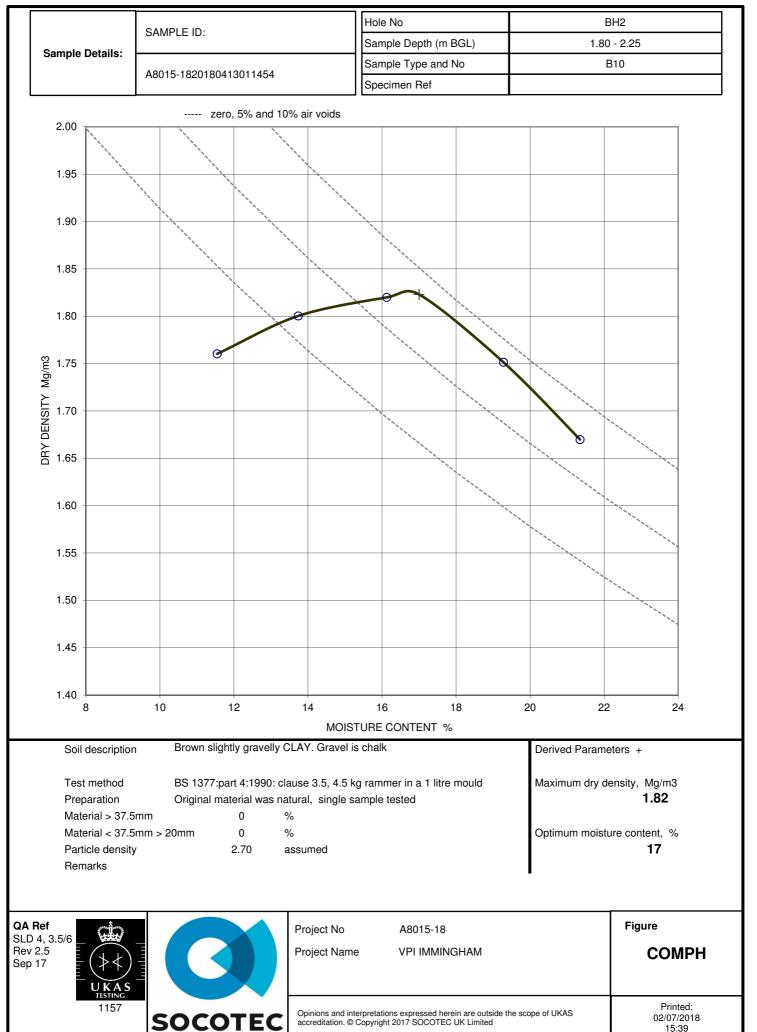
roject No	A8015-18
roject Name	VPI IMMINGHAN

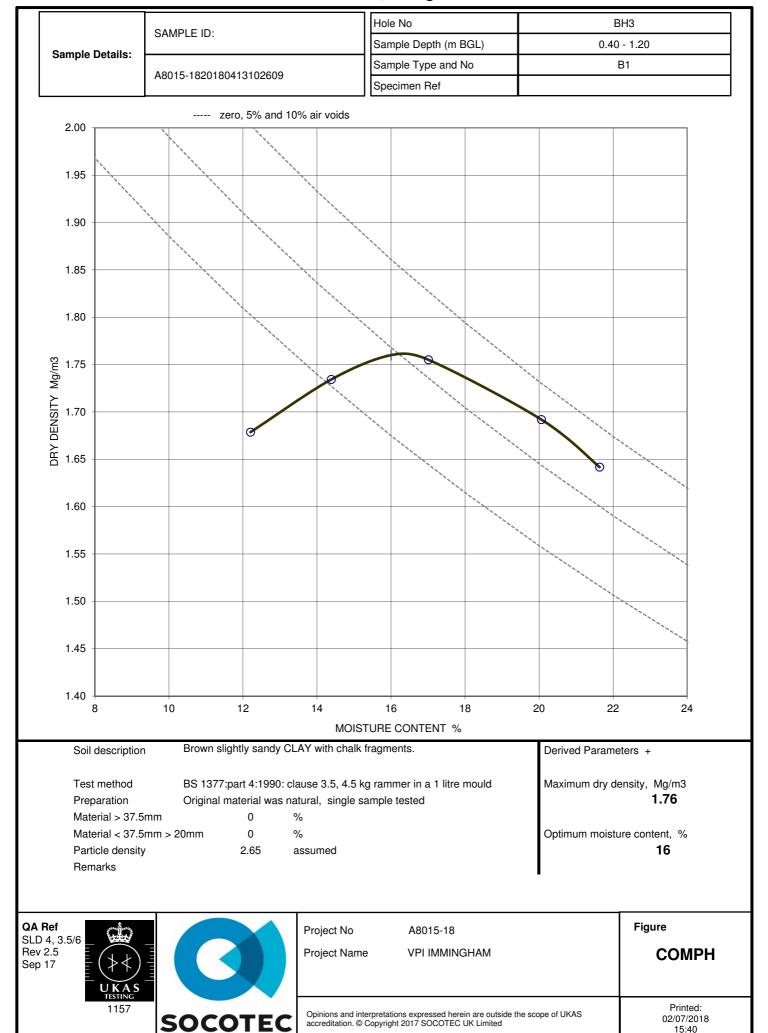
COMPL

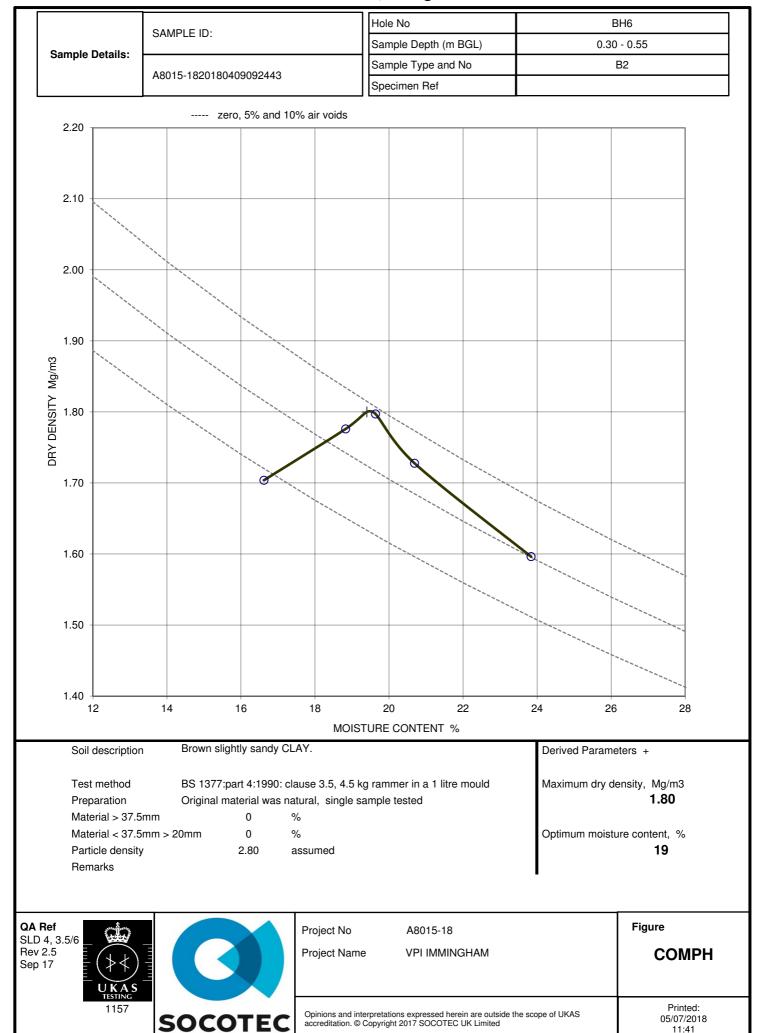
Opinions and interpretations expressed herein are outside the scope of UKAS accreditation. © Copyright 2017 SOCOTEC UK Limited

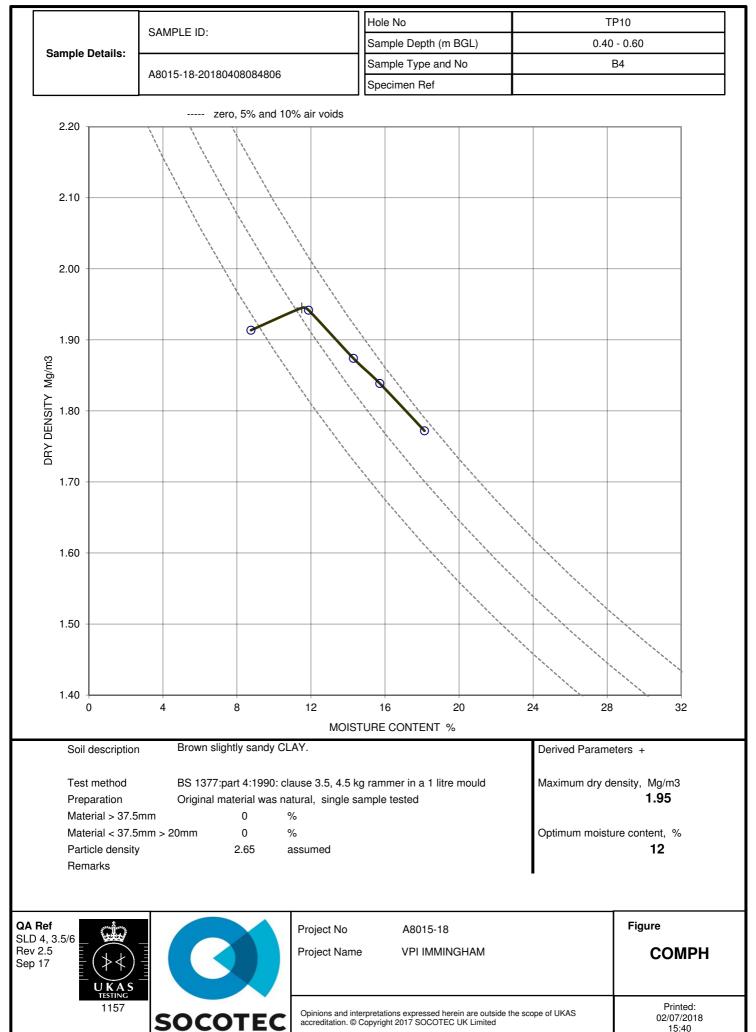
Printed: 02/07/2018 15:47

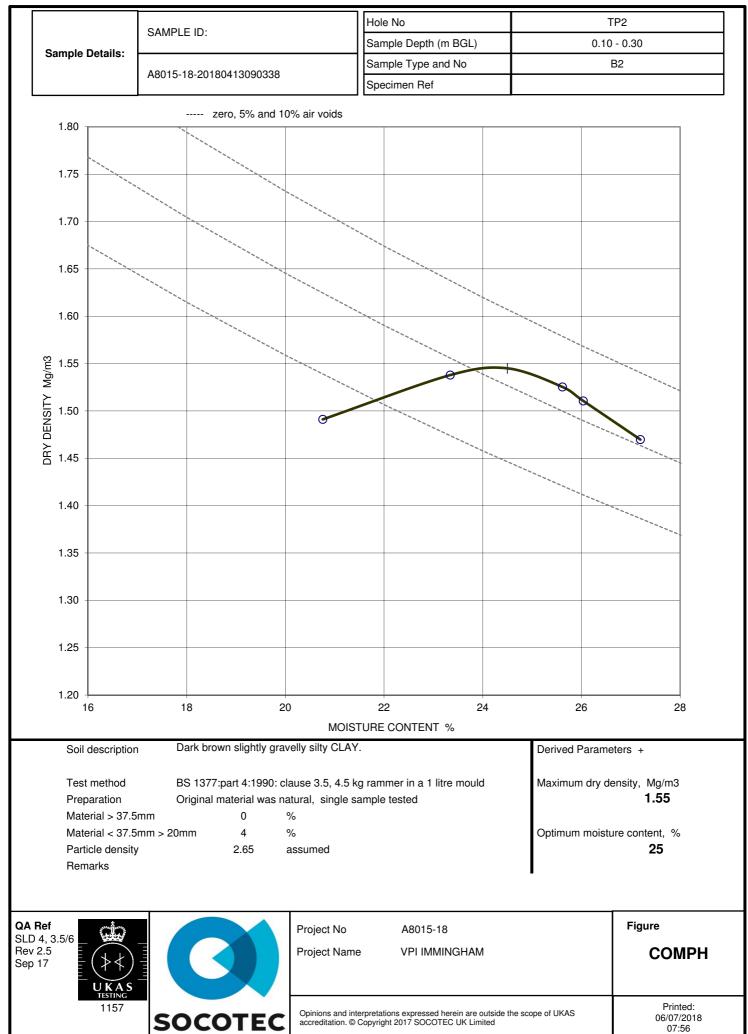


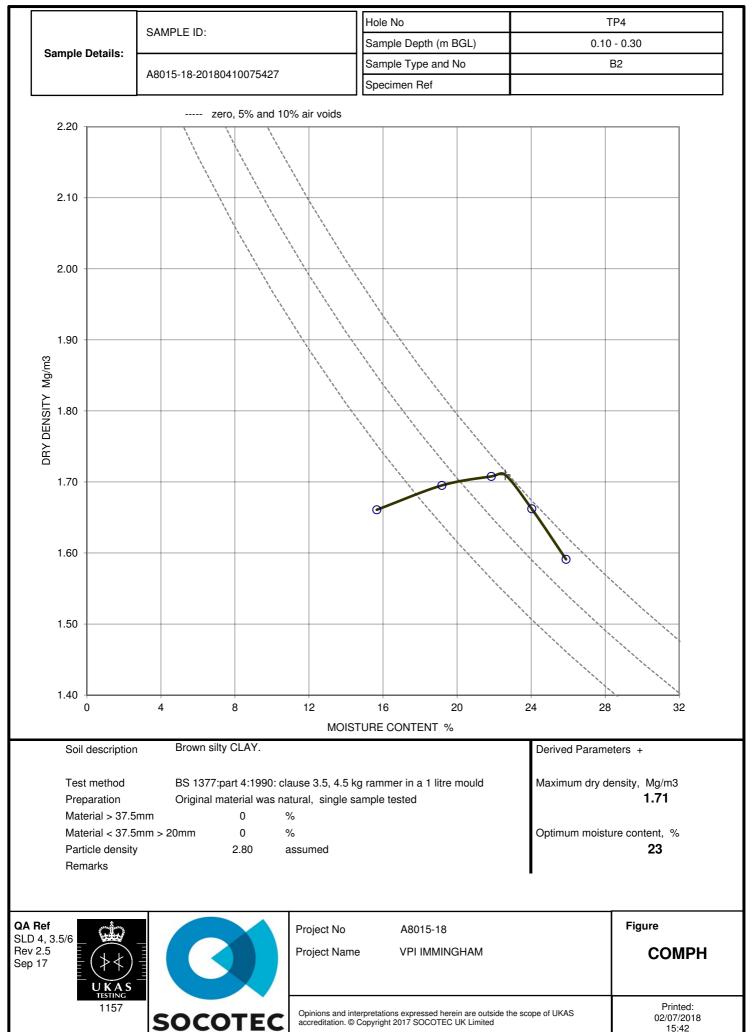


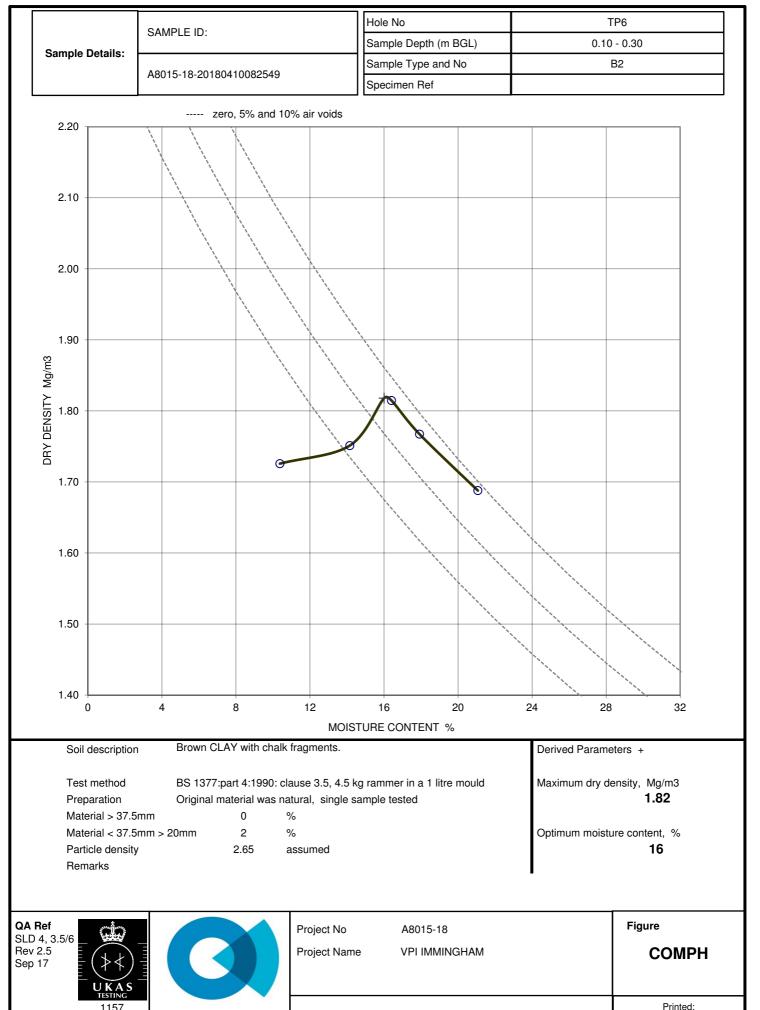

SOCOTEC	

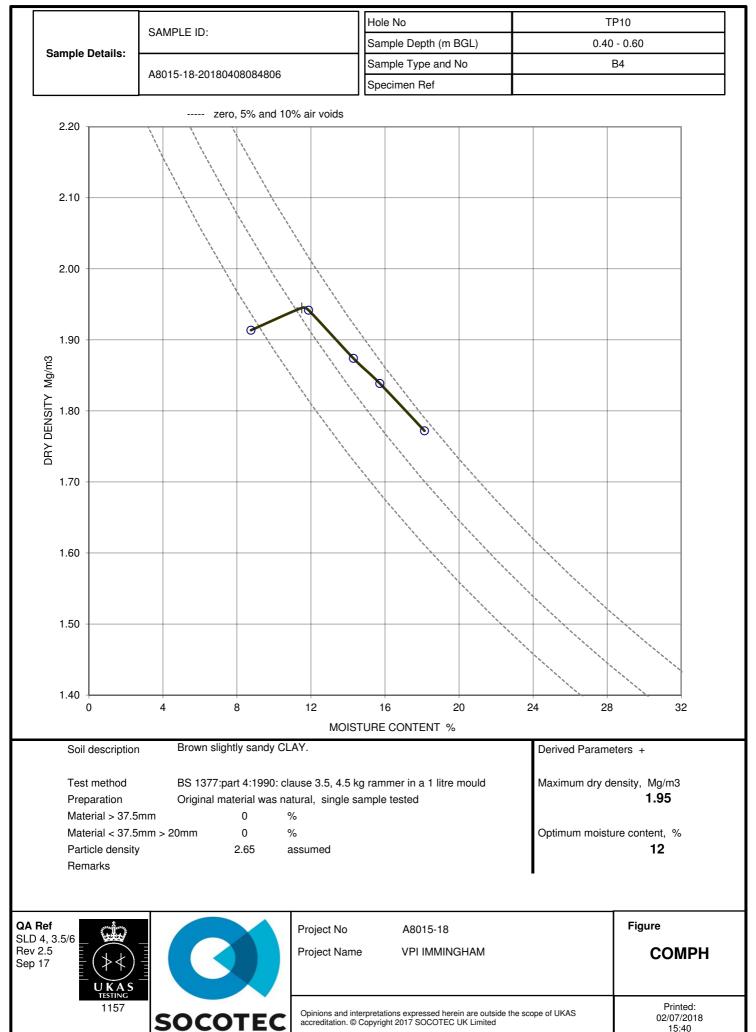

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation. © Copyright 2017 SOCOTEC UK Limited

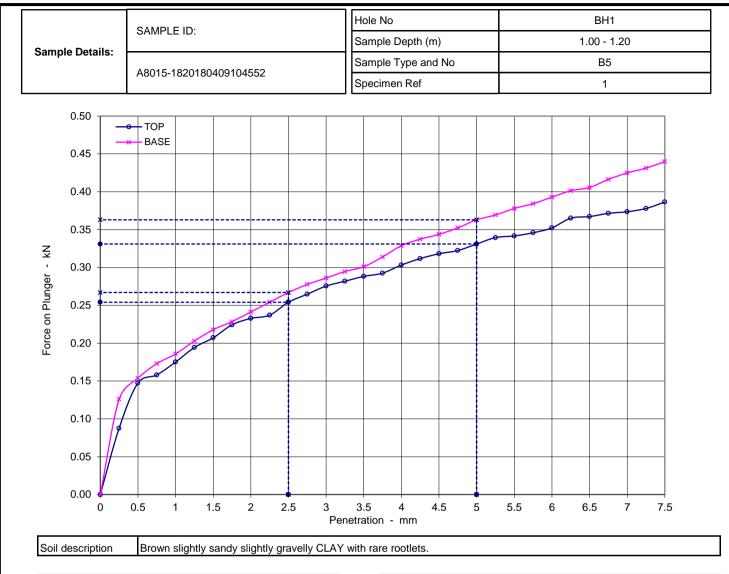

Printed: 02/07/2018 15:47











Opinions and interpretations expressed herein are outside the scope of UKAS accreditation. © Copyright 2017 SOCOTEC UK Limited

02/07/2018 15:42

SOCOTEC

Test Conditions		
Sample Retained on 20 mm sieve	%	27

	Method of Compaction				
ration	Recompacted - Rammer compaction with specified effort (4.5kg)				
Preparation	Soaked test	NO			
	Soaking Period days	N/A			
	Amount of Swell mm	N/A			

Curaharaa analiad	kg	16
Surcharge applied	kPa	10

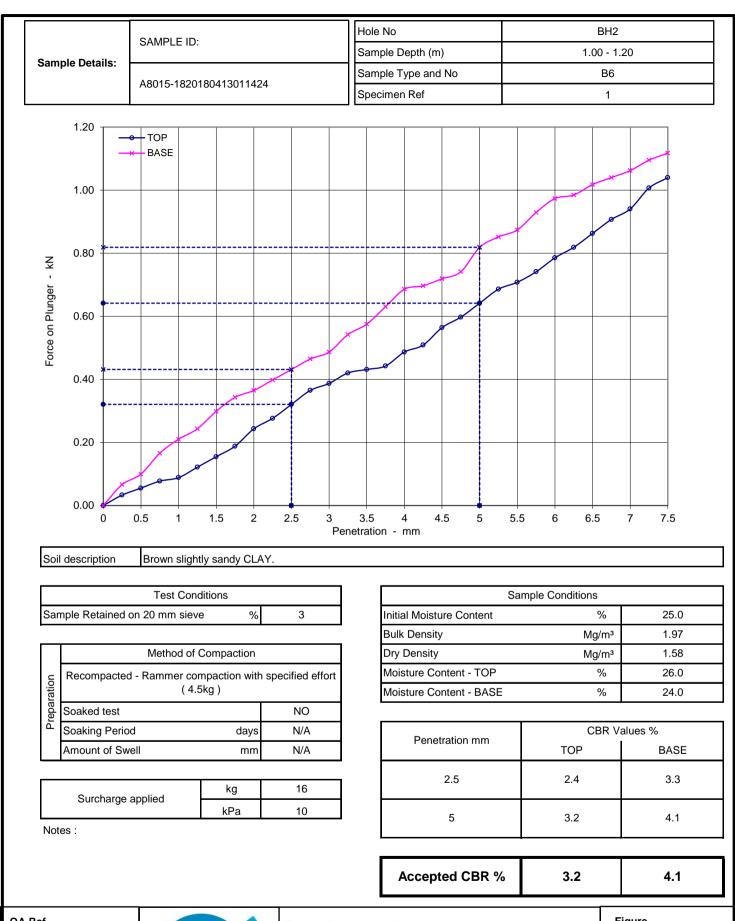
Notes	
140162	

Sample Conditions			
Initial Moisture Content	%	22.0	
Bulk Density	Mg/m³	2.02	
Dry Density	Mg/m³	1.66	
Moisture Content - TOP	%	22.0	
Moisture Content - BASE	%	21.0	

Penetration mm	CBR Values %		
Penetration min	TOP	BASE	
2.5	1.9	2.0	
5	1.7	1.8	

Accepted CBR %	1.9	2.0
----------------	-----	-----

QA Ref SLR 2 Rev 2.7 Apr 15


Project	INO
Project	Name

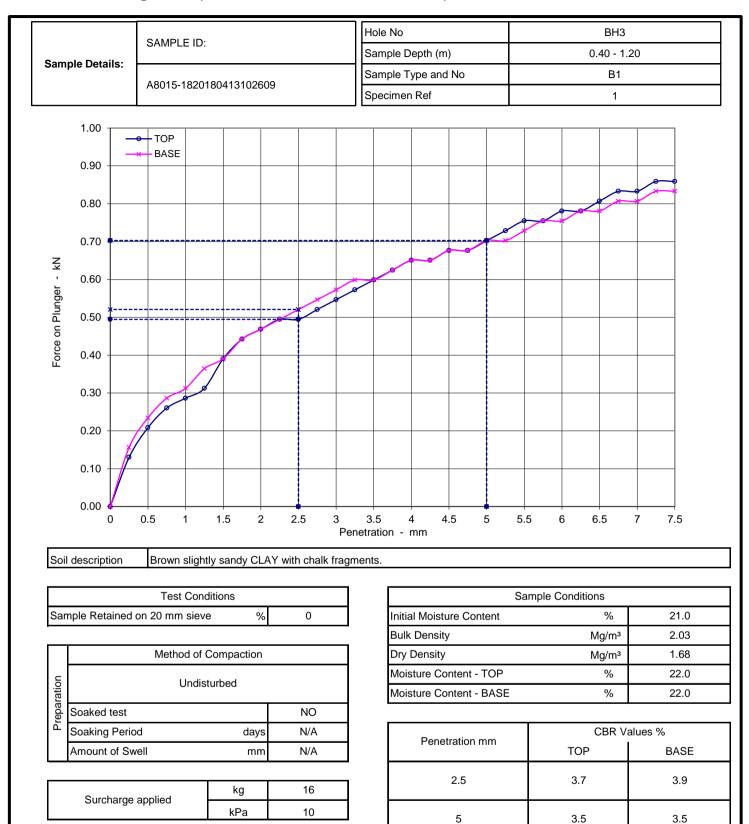
A8015-18 VPI IMMINGHAM Figure

CBR

Test carried out outside the scope of UKAS accreditation. @ Copyright 2015 SOCOTEC UK Limited

Printed: 14/08/2018 11:15

QA Ref SLR 2
Rev 2.7
Apr 15

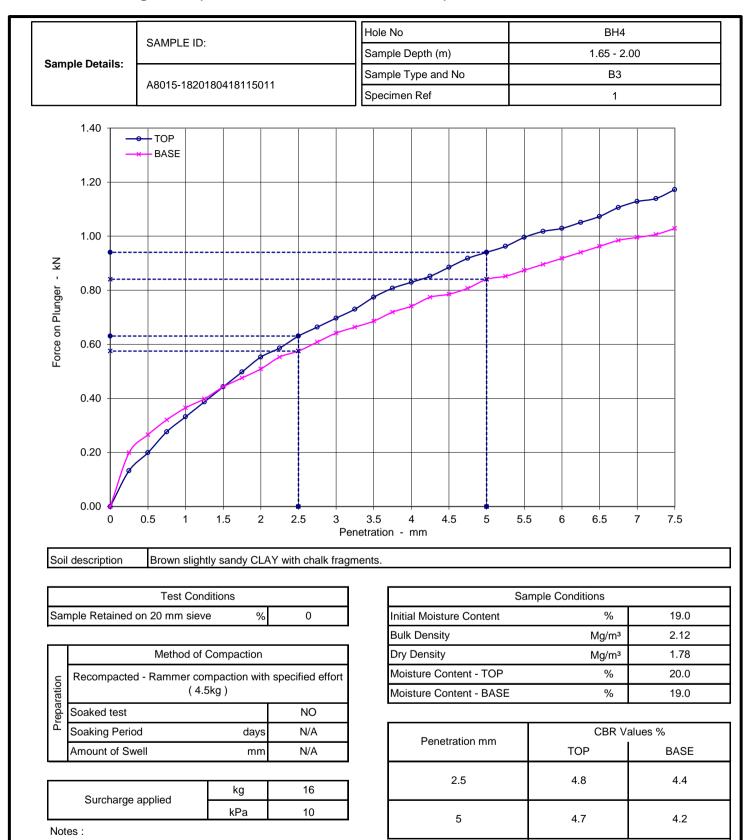

Project No A8015-18
Project Name VPI IMMINGHAM

CBR

Test carried out outside the scope of UKAS accreditation. © Copyright 2015
SOCOTEC UK Limited

Printed: 14/08/2018 11:15

Notes:

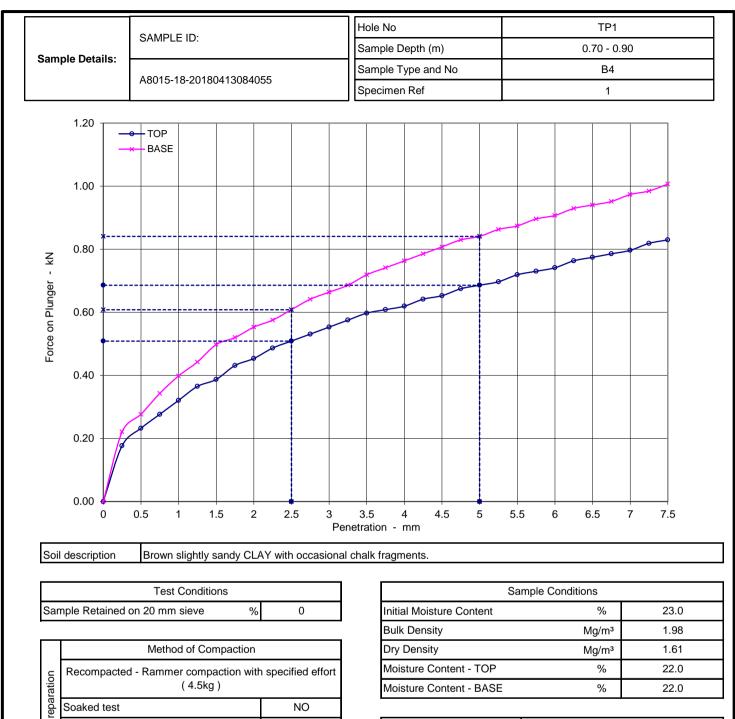


QA Ref SLR 2 Rev 2.7 Apr 15		Project No Project Name	A8015-18 VPI IMMINGHAM	Figure CBR
	SOCOTEC	Test carried out outside the SOCOTEC UK Limited	e scope of UKAS accreditation. © Copyright 2015	Printed: 14/08/2018 11:15

Accepted CBR %

3.7

3.9



QA Ref SLR 2 Rev 2.7 Apr 15		Project No Project Name	A8015-18 VPI IMMINGHAM	Figure CBR
	SOCOTEC	Test carried out outside the SOCOTEC UK Limited	e scope of UKAS accreditation. © Copyright 2015	Printed: 14/08/2018 11:15

Accepted CBR %

4.8

4.4

22	, i	· ·	
Prepai	Soaked test		NO
Р	Soaking Period	days	N/A
	Amount of Swell	mm	N/A
		1	40

Surcharge applied	kg	16
	kPa	10

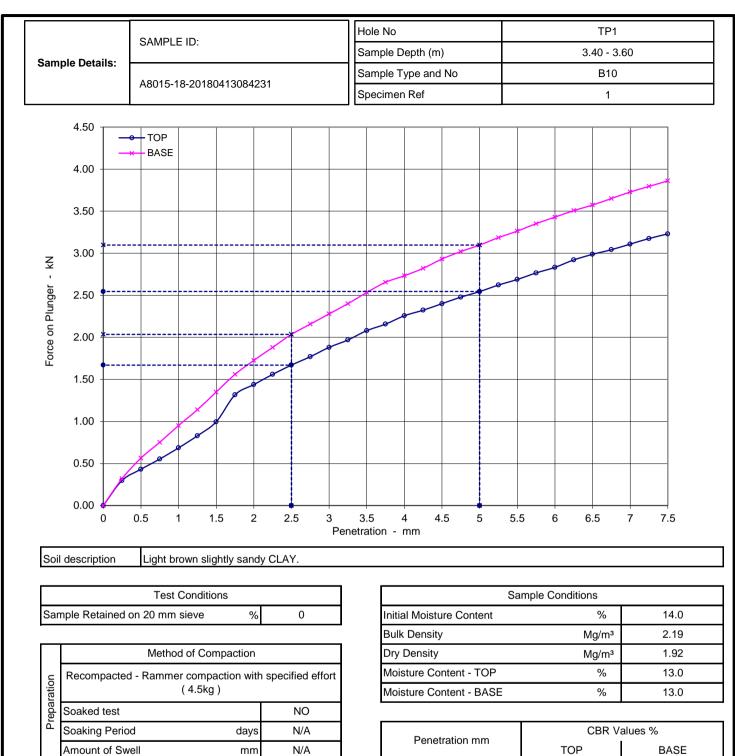
Notes:

Penetration mm	CBR Values %	
renetiation min	TOP	BASE
2.5	3.9	4.6
5	3.4	4.2

Accepted CBR %	3.9	4.6
----------------	-----	-----

QA Ref SLR 2 Rev 2.7 Apr 15

Project No	
Project Name	


A8015-18
VPI IMMINGHAM

Figure

CBR

Test carried out outside the scope of UKAS accreditation. © Copyright 2015 SOCOTEC UK Limited

Printed: 14/08/2018 11:15

Dan atratia a mara	CBR V	alues %
Penetration mm	TOP	BASE
2.5	13.0	15.0
5	13.0	15.0

Accepted CBR %	13.0	15.0
----------------	------	------

Printed: 14/08/2018 11:15

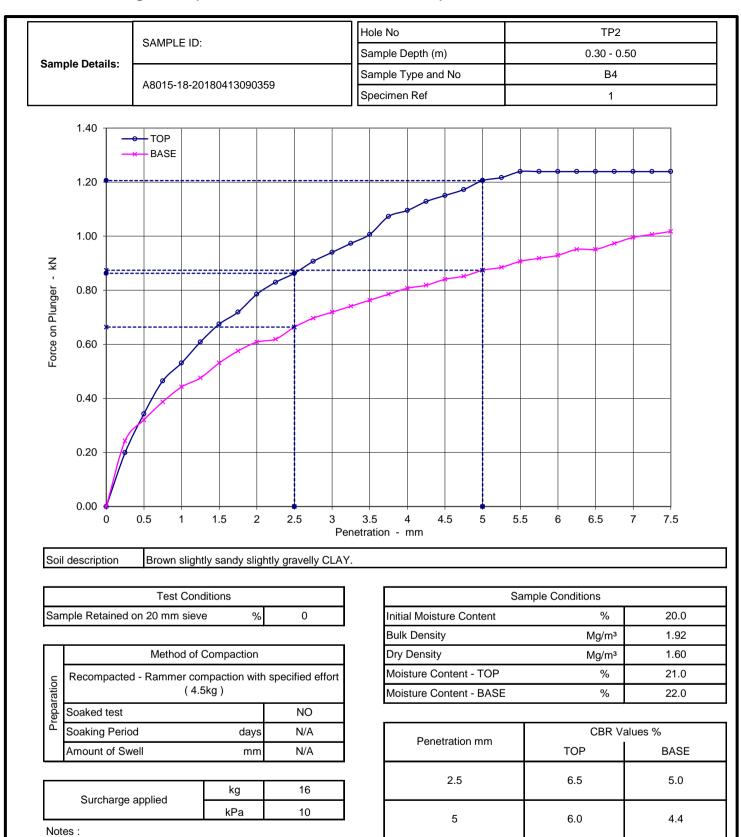
QA Ref SLR 2 Rev 2.7 Apr 15

Surcharge applied

Notes:

kg

kPa

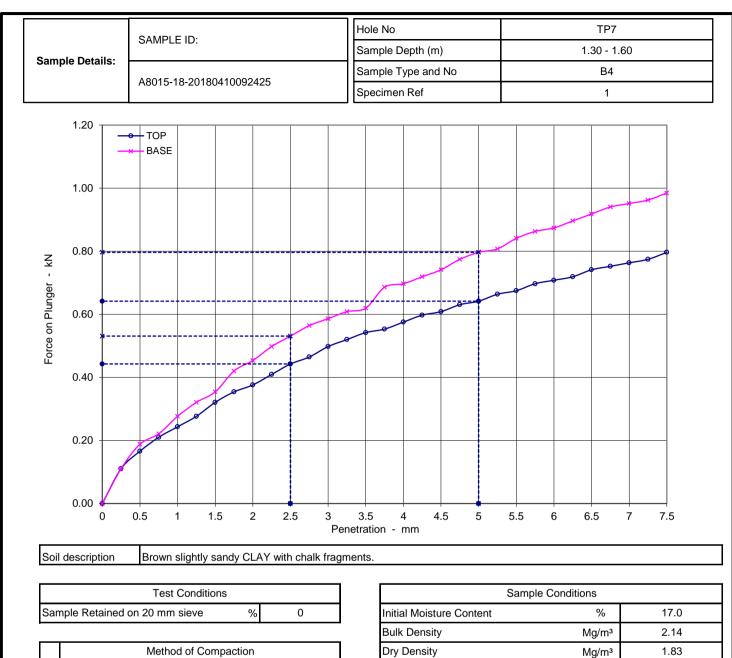

16

10

SOCOTEC UK Limited

Project No	A8015-18	Figure
Project Name	VPI IMMINGHAM	CBR

Test carried out outside the scope of UKAS accreditation. © Copyright 2015



QA Ref SLR 2 Rev 2.7 Apr 15		Project No Project Name	A8015-18 VPI IMMINGHAM	Figure CBR
	SOCOTEC	Test carried out outside the SOCOTEC UK Limited	e scope of UKAS accreditation. © Copyright 2015	Printed: 14/08/2018 11:15

Accepted CBR %

6.5

5.0

	Method of Compaction		
Preparation	Recompacted - Rammer compaction with specified effort (4.5kg)		
гера	Soaked test	NO	
Д	Soaking Period days	N/A	
	Amount of Swell mm	N/A	

Surcharge applied	kg	16
	kPa	10

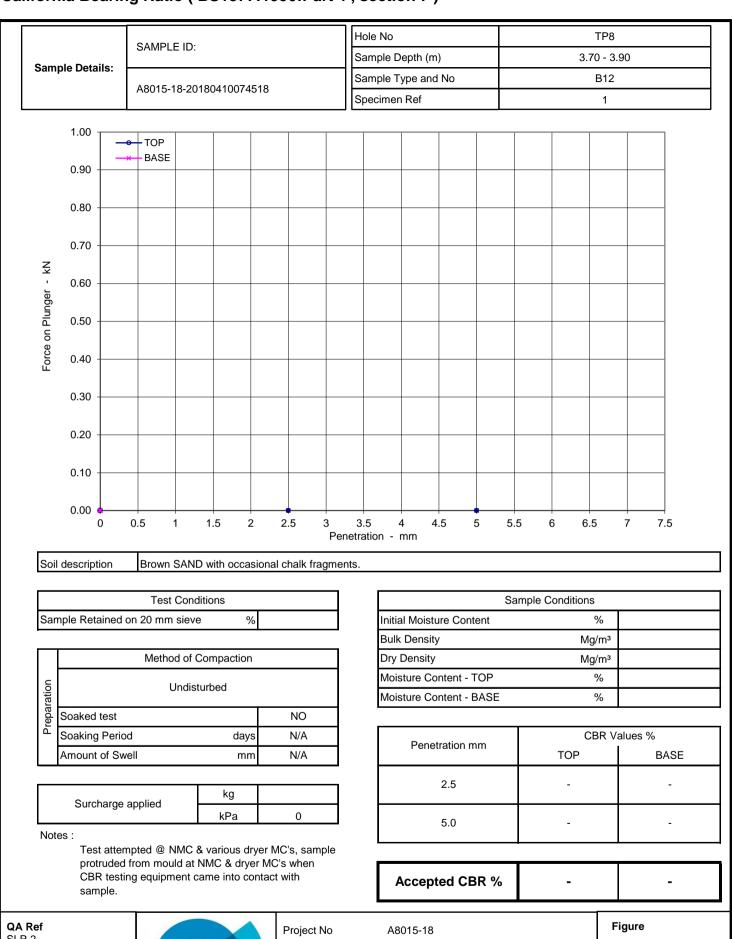
Notes	
140162	

Sample Conditions		
Initial Moisture Content	%	17.0
Bulk Density	Mg/m³	2.14
Dry Density	Mg/m³	1.83
Moisture Content - TOP	%	17.0
Moisture Content - BASE	%	17.0

Penetration mm	CBR Values %		
Penetration min	TOP	BASE	
2.5	3.4	4.0	
5	3.2	4.0	

Accepted CBR %	3.4	4.0
----------------	-----	-----

QA Ref SLR 2 Rev 2.7 Apr 15

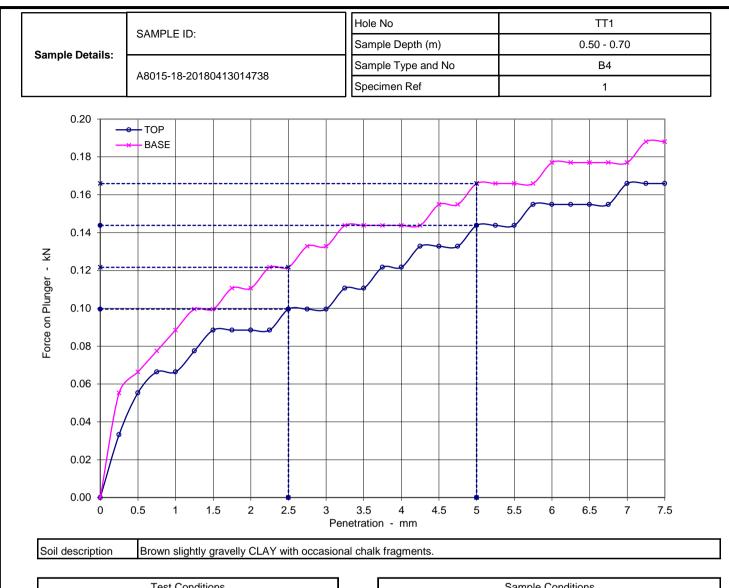

Project	No
Project	Name

A8015-18 VPI IMMINGHAM Figure

CBR

Test carried out outside the scope of UKAS accreditation. © Copyright 2015 SOCOTEC UK Limited

Printed: 14/08/2018 11:15


SLR 2
Rev 2.7
Apr 15

Project Name VPI IMMINGHAM

CBR

Test carried out outside the scope of UKAS accreditation. © Copyright 2015
SOCOTEC UK Limited

Printed: 14/08/2018 14:21

Test Conditions		
Sample Retained on 20 mm sieve	%	2

	Method of Compaction		
Preparation	Recompacted - Rammer compaction with specified effort (4.5kg)		
гера	Soaked test	NO	
Д	Soaking Period days	N/A	
	Amount of Swell mm	N/A	

Surcharge applied	kg	16
	kPa	10

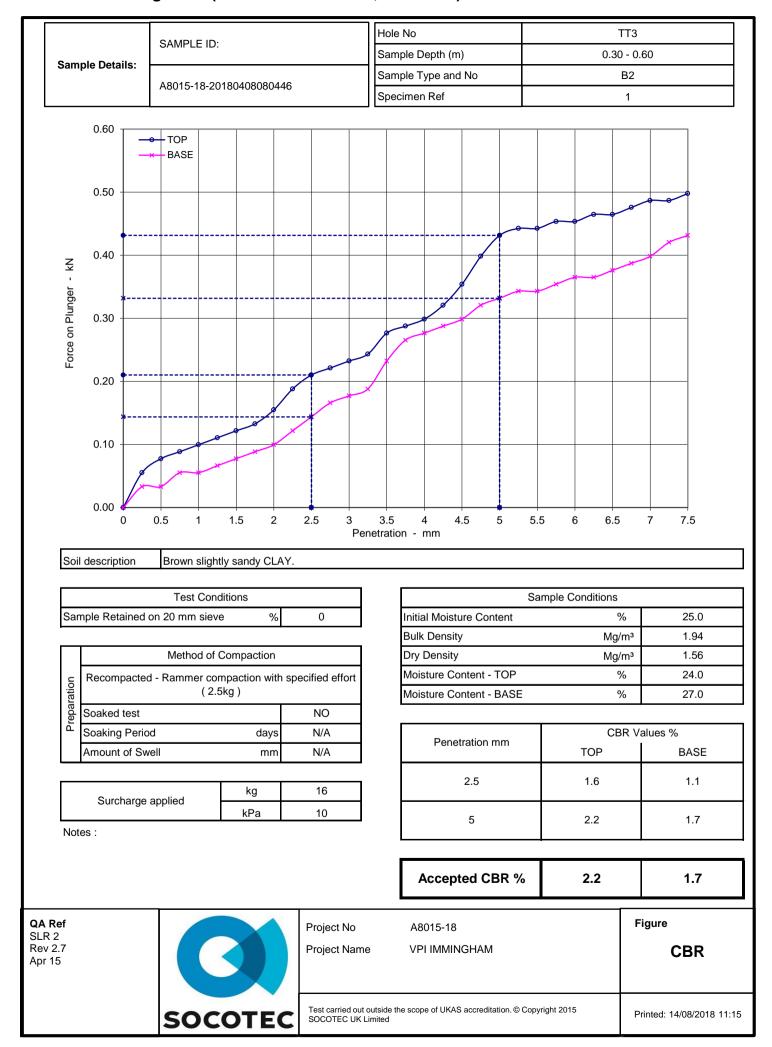
Notes	
140162	

Sample Conditions					
Initial Moisture Content	%	27.0			
Bulk Density	Mg/m³	2.40			
Dry Density	Mg/m³	1.90			
Moisture Content - TOP	%	25.0			
Moisture Content - BASE % 26.0					

Penetration mm	CBR Values %			
Penetration min	TOP	BASE		
2.5	0.8	0.9		
5	0.7	0.8		

Accepted CBR %	0.8	0.9
----------------	-----	-----

QA Ref SLR 2 Rev 2.7 Apr 15


Project No
Project Name

A8015-18 VPI IMMINGHAM Figure

CBR

Test carried out outside the scope of UKAS accreditation. © Copyright 2015 SOCOTEC UK Limited

Printed: 14/08/2018 11:15

TEST REPORT

Report No. EFS/187041 (Ver. 1)

SOCOTEC UK Doncaster Askern Road Carcroft Doncaster South Yorkshire DN6 8DG

Site: A8015-18 VPI Immingham

The 4 samples described in this report were registered for analysis by SOCOTEC UK Limited on 23-Jun-2018. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 03-Jul-2018

The following tables are contained in this report:

Table 1 Main Analysis Results (Page 2)
Analytical and Deviating Sample Overview (Page 3)
Table of Method Descriptions (Page 4)
Table of Report Notes (Page 5)
Table of Sample Descriptions (Appendix A Page 1 of 1)

On behalf of SOCOTEC UK Lim (

Tim Barnes

Operations Director Energy & Waste Services

Tests marked '^' have been subcontracted to another laboratory.

Where samples have been flagged as deviant on the Analytical and Deviating Sample Overview, for any reason, the data may not be representative of the sample at the point of sampling and the validity of the data may be affected.

SOCOTEC UK Limited accepts no responsibility for any sampling not carried out by our personnel.

Date of Issue: 03-Jul-2018

	Units :	%										
Method Codes :		ORGMAT										
Method Reporting Limits :		0.1										
LABID Number CL/	Sample Client Sample Description le Date	Organic Matter %										
1910777	BH4 D 2 1.20	1.4										
1910778	TP02 D 3 0.30	7.1										
1910779	BH5 D 13 2.90	1.4										
1910780	BH2 D 3 0.60	16.7										
	SOCOTEC (ame	SOCOTEC UK Doncaster Tim Clifford				Sample Analysis				
	Bretby Business Park, Ashby Road Brethy Business Park, Ashby Road Date Printed 03-Jul-2018											
	Button-on-Trent, Staffordshire, DE15 0YZ Tel +44 (0) 1283 554400		A8015-18 VPI Immingham					Report N		EFS/187041		
								Table Nu		1		
							I able INC	annoe!	1			
	Fax +44 (0) 1283 554422											

Report No

SOCOTEC UK Ltd Environmental Chemistry Analytical and Deviating Sample Overview

Customer SOCOTEC UK Doncaster Site A8015-18 VPI Immingham

S187041

Consignment No S75653
Date Logged 23-Jun-2018

In-House Report Due 29-Jun-2018

Please note the results for any subcontracted analysis (identified with a '^') is likely to take up to an additional five working days.

		MethodID	CustServ	ORGMAT
ID Number	Description	Sampled	REPORT A	Organic Matter %
01/4040777	DUA 4 00 4 05	<u> </u>	1	1
CL/1910777	BH4 1.20-1.65	D	D	D
CL/1910778	TP02 0.30	D	D	D
CL/1910779	BH5 2.90-3.35	D	D	D
CL/1910780	BH2 0.60	D	D	D

Note: We will endeavour to prioritise samples to complete analysis within holding time; however any delay could result in samples becoming deviant whilst being processed in the laboratory.

If sampling dates are missing or matrices unclassified then results will not be ISO 17025 accredited. Please contact us as soon as possible to provide missing information in order to reinstate accreditation.

Deviating Sample Key

- A The sample was received in an inappropriate container for this analysis
- The sample was received without the correct preservation for this analysis
- C Headspace present in the sample container
- The sampling date was not supplied so holding time may be compromised applicable to all analysis
- Sample processing did not commence within the appropriate holding time
- Sample processing did not commence within the appropriate handling time

Requested Analysis Key

Analysis Required

Analysis dependant upon trigger result - Note: due date may be affected if triggered

No analysis scheduled

Analysis Subcontracted - Note: due date may vary

Report Number: EFS/187041

Method Descriptions

Matrix	MethodID	Analysis Basis	Method Description				
Soil	ORGMAT		Acid Dichromate oxidation of the sample followed by colorimetric				
		@ < 35°C	analysis of the extract				

Report Notes

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.
 All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity.
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l

Nil: Where "Nil" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/l

Asbestos Analysis

CH Denotes Chrysotile
CR Denotes Crocidolite
AM Denotes Amosite
TR Denotes Tremolite
AC Denotes Actinolite
AN Denotes Anthophylite

NAIIS No Asbestos Identified in Sample **NADIS** No Asbestos Detected In Sample

Symbol Reference

- ^ Sub-contracted analysis.
- **\$\$** Unable to analyse due to the nature of the sample
- ¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.

This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

- ¥ Results for guidance only due to possible interference
- & Blank corrected result
- I.S Insufficient sample to complete requested analysis
- I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

N.F No Flow

NS Information Not Supplied

Req Analysis requested, see attached sheets for results

- **Þ** Raised detection limit due to nature of the sample
- * All accreditation has been removed by the laboratory for this result
- # MCERTS accreditation has been removed for this result
- § accreditation has been removed for this result as it is a non-accredited matrix

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

Page 5 of 5 EFS/187041 Ver. 1

Sample Descriptions

Client : SOCOTEC UK Doncaster
Site : A8015-18 VPI Immingham

Report Number: \$18_7041

Note: major constituent in upper case

Lab ID Number	Client ID	Note: major constituent in upper case Description
CL/1910777	BH4 D 2 1.20	CLAY SILT CLAY
CL/1910777	TD02 D 2 0 20	SIIT
CL/1910776	PUE D 12 2 00	OLAY
CL/1910778 CL/1910779 CL/1910780	TP02 D 3 0.30 BH5 D 13 2.90 BH2 D 3 0.60	SILT
CL/1910780	BH2 D 3 0.60	SILI

Appendix A Page 1 of 1 03/07/2018EFS/187041 Ver. 1

TEST REPORT

Report No. EFS/187043 (Ver. 1)

SOCOTEC UK Doncaster Askern Road Carcroft Doncaster South Yorkshire DN6 8DG

Site: A8015-18 VPI Immingham

The 12 samples described in this report were registered for analysis by SOCOTEC UK Limited on 23-Jun-2018. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 04-Jul-2018

Tests where the accreditation is set to N or No, and any individual data items marked with a * are not UKAS accredited. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

The following tables are contained in this report:

Table 1 Main Analysis Results (Page 2)
Analytical and Deviating Sample Overview (Page 3)
Table of Method Descriptions (Page 4)
Table of Report Notes (Page 5)
Table of Sample Descriptions (Appendix A Page 1 of 1)

On behalf of SOCOTEC UK Lim (

Tim Barnes

Operations Director Energy & Waste Services

Tests marked '^' have been subcontracted to another laboratory.

Where samples have been flagged as deviant on the Analytical and Deviating Sample Overview, for any reason, the data may not be representative of the sample at the point of sampling and the validity of the data may be affected.

SOCOTEC UK Limited accepts no responsibility for any sampling not carried out by our personnel.

Date of Issue: 04-Jul-2018

		Units :	mg/kg	mg/l	%	%	pH Units								
		d Codes :	ICPACIDS	ICPWSS	ORGMAT	TSBRE1	WSLM50								
	Method Reportin		20	10	0.1	0.005									
	UKAS AC	credited :	Yes	Yes	No	No	No								
LAB ID Number CL/	Client Sample Description	Sample Date	SO4 (acid sol)	SO4 (H2O sol) mg/l	Organic Matter %	Total Sulphur.	рН (ВЅ1377)								
1910790	BH2 D 14 2.80				1.6										
1910791	BH3 D 4 2.00				1.4										
1910792	BH3 D 6 3.00		433	116		0.041	8.4								
1910793	BH6 D 26 13.70		200	23		0.029	8.7								
1910794	TP1 D 1 0.10				3.6										
1910795	TP2 D 11 4.00		276	56		0.031	8.8								
1910796	TP3 D 9 3.40				1.5										
1910797	TP5 D 1 0.10				3.6										
1910798	TP6 D 3 0.40		1420	479		0.085	7.8								
1910799	TP8 D 7 2.00				1.9										
1910800	TP9 D 5 0.80				3.1										
1910801	TT2 B 6 2.00		643	118		0.039	7.5								
	SOCOTEC (Client Na	ame	SOCOT	TEC UK D) Oncaste	<u> </u>			Sam	ple Ana	alysis		
			Contact		Tim Cliffo	rd									
E	Bretby Business Park, Ashby Road						_			 Date Pri	nted		(04-Jul-2018	
E	Burton-on-Trent, Staffordshire, DE15 0YZ				A 0.04	E 40 \	/DL La	m:naka:	•	Report N	Number		Е	FS/187043	
	Tel +44 (0) 1283 554400				AVU1	3-18	v Pi im	minghan	n	Table Nu				1	
	Fax +44 (0) 1283 554422														

Report No

SOCOTEC UK Ltd Environmental Chemistry Analytical and Deviating Sample Overview

Customer SOCOTEC UK Doncaster Site A8015-18 VPI Immingham

S187043

Consignment No S75655

Date Logged 23-Jun-2018

In-House Report Due 29-Jun-2018

Please note the results for any subcontracted analysis (identified with a '^') is likely to take up to an additional five working days.

	Suits for any subcontracted analy	MethodID	CustServ	Dep.Opt		<u>, </u>	ICPACIDS	ICPBRE	ICPWSS	KONECL	KoneNO3	ORGMAT	TSBRE1	WSLM50
ID Number	Description	Sampled	REPORT A	DO CI if pH<5.5	DO Mg if SO4(W)>3000	DO NO3 if pH<5.5	SO4 (acid sol)	Magnesium (BRE)	SO4 (H2O sol) mg/l	Chloride:(2:1)	Nitrate (BRE 2:1): mg/l	Organic Matter %	Total Sulphur.	рН (BS1377)
							✓		✓					
CL/1910790	BH2 2.80-3.25	D	D									D		
CL/1910791	BH3 2.00-2.45	D	D									D		
CL/1910792	BH3 3.00-3.45	D	D	D	D	D	D	D	D	D	D		D	D
CL/1910793	BH6 13.70	D	D				D	D	D	D	D		D	D
CL/1910794	TP1 0.10	D	D									D		
CL/1910795	TP2 4.00	D	D				D	D	D	D	D		D	D
CL/1910796	TP3 3.40	D	D									D		
CL/1910797	TP5 0.10	D	D									D		
CL/1910798	TP6 0.40	D	D				D	D	D	D	D		D	D
CL/1910799	TP8 2.00	D	D									D		
CL/1910800	TP9 0.80	D	D									D		
CL/1910801	TT2 2.00-2.15	D	D				D	D	D	D	D		D	D

Note: We will endeavour to prioritise samples to complete analysis within holding time; however any delay could result in samples becoming deviant whilst being processed in the laboratory.

If sampling dates are missing or matrices unclassified then results will not be ISO 17025 accredited. Please contact us as soon as possible to provide missing information in order to reinstate accreditation.

Deviating Sample Key

- A The sample was received in an inappropriate container for this analysis
- B The sample was received without the correct preservation for this analysis
- C Headspace present in the sample container
- D The sampling date was not supplied so holding time may be compromised applicable to all analysis
- Sample processing did not commence within the appropriate holding time
- Sample processing did not commence within the appropriate handling time

Requested Analysis Key

Analysis Required

Analysis dependant upon trigger result - Note: due date may be affected if triggered

No analysis scheduled

Analysis Subcontracted - Note: due date may vary

Where individual results are flagged see report notes for status.

Report Number: EFS/187043

Method Descriptions

Matrix	MethodID	Analysis	Method Description
		Basis	
Soil	ICPACIDS	Oven Dried	Determination of Total Sulphate in soil samples by Hydrochloric
		@ < 35°C	Acid extraction followed by ICPOES detection
Soil	ICPWSS	Oven Dried	Determination of Water Soluble Sulphate in soil samples by water
		@ < 35°C	extraction followed by ICPOES detection
Soil	ORGMAT	Oven Dried	Acid Dichromate oxidation of the sample followed by colorimetric
		@ < 35°C	analysis of the extract
Soil	TSBRE1	Oven Dried	Determination of Total Carbon and/or Total Sulphur in solid
		@ < 35°C	samples by high temperature combustion/infrared detection
Soil	WSLM50	Oven Dried	Determination of pH of 2.5:1 deionised water to soil extracts using
		@ < 35°C	pH probe.

Report Notes

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.
 All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity.
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l

Nil: Where "Nil" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/l

Asbestos Analysis

CH Denotes Chrysotile
CR Denotes Crocidolite
AM Denotes Amosite
TR Denotes Tremolite
AC Denotes Actinolite
AN Denotes Anthophylite

NAIIS No Asbestos Identified in Sample **NADIS** No Asbestos Detected In Sample

Symbol Reference

- ^ Sub-contracted analysis.
- **\$\$** Unable to analyse due to the nature of the sample
- ¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.

This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

- ¥ Results for guidance only due to possible interference
- & Blank corrected result
- I.S Insufficient sample to complete requested analysis
- I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

N.F No Flow

NS Information Not Supplied

Req Analysis requested, see attached sheets for results

- **Þ** Raised detection limit due to nature of the sample
- * All accreditation has been removed by the laboratory for this result
- # MCERTS accreditation has been removed for this result
- § accreditation has been removed for this result as it is a non-accredited matrix

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

Page 5 of 5 EFS/187043 Ver. 1

Sample Descriptions

Client : SOCOTEC UK Doncaster
Site : A8015-18 VPI Immingham

Report Number: \$18_7043

Note: major constituent in upper case

		Note: major constituent in upper case
Lab ID Number	Client ID	Description
CL/1910790	BH2 D 14 2.80	CLAY
CL/1910791	BH3 D 4 2.00	CLAY
CL/1910792	BH3 D 6 3.00	CLAY
CL/1910793	BH6 D 26 13.70	CLAY
CL/1910794	TP1 D 1 0.10	SILT
CL/1910/94	TPT D T 0.10	SILI
CL/1910795	TP2 D 11 4.00	SAND
CL/1910796	TP3 D 9 3.40	SILT
CL/1910797	TP5 D 1 0.10	CLAY
CL/1910798	TP6 D 3 0.40	SILT
CL/1910799	TP8 D 7 2.00	CLAY
CL/1910/99	TP0 D 7 2.00	OLT
CL/1910800	TP9 D 5 0.80	SILT
CL/1910801	TT2 B 6 2.00	SILT
-		
1		

Appendix A Page 1 of 1 04/07/2018EFS/187043 Ver. 1

TEST REPORT

Report No. EFS/187204 (Ver. 1)

SOCOTEC UK Doncaster Askern Road Carcroft Doncaster South Yorkshire DN6 8DG

Site: A8015-18 VPI Immingham

The 11 samples described in this report were registered for analysis by SOCOTEC UK Limited on 28-Jun-2018. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 09-Jul-2018

Tests where the accreditation is set to N or No, and any individual data items marked with a * are not UKAS accredited. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

The following tables are contained in this report:

Table 1 Main Analysis Results (Page 2)
Analytical and Deviating Sample Overview (Page 3)
Table of Method Descriptions (Page 4)
Table of Report Notes (Page 5)
Table of Sample Descriptions (Appendix A Page 1 of 1)

On behalf of SOCOTEC UK Lim (

Tim Barnes Operations Director
Energy & Waste Services

Date of Issue: 09-Jul-2018

Tests marked '^' have been subcontracted to another laboratory.

Where samples have been flagged as deviant on the Analytical and Deviating Sample Overview, for any reason, the data may not be representative of the sample at the point of sampling and the validity of the data may be affected.

SOCOTEC UK Limited accepts no responsibility for any sampling not carried out by our personnel.

		Units :	mg/kg	mg/l	%	%	pH Units								
		d Codes :	ICPACIDS	ICPWSS	ORGMAT	TSBRE1	WSLM50								
	Method Reportin		20	10	0.1	0.005									
	UKAS AC	credited :	Yes	Yes	No	No	No								
LABID Number CL/	Client Sample Description	Sample Date	SO4 (acid sol)	SO4 (H2O sol) mg/l	Organic Matter %	Total Sulphur.	рН (ВS1377)								
1911581	TT02 B 6 2.00		498	79		0.033	7.8								
1911582	TT03 B 4 1.30				2.6										
1911583	BH5 B 18 4.00		737	205		0.153	8.0								
1911584	BH6 B 1 0.00				3.2										
1911585	TP02 B 10 3.40				1.6										
1911586	TP6 B 6 1.00				1.4										
1911587	TP09 B 6 0.80		626	121		0.053	7.6								
1911588	BH1 D 3 0.45				13.7										
1911589	BH1 B 5 1.00		1260	847		0.068	7.8								
1911590	BH2 B 13 2.20		1170	530		0.075	8.1								
1911591	BH2 B 31 5.70		604	178		0.319	8.5								
					1	1	1								
					1										
					1		1								
					1										
	SOCOTEC		Client Na	ame			oncaste				Sam	ple Ana	alysis		
			Contact		Tim Cliffo	ora									
	Bretby Business Park, Ashby Road										Printed			9-Jul-2018	
E	Burton-on-Trent, Staffordshire, DE15 0YZ				Δ801	5-18 V	/PI In	mingh	am		t Number		E	FS/187204	
	Tel +44 (0) 1283 554400				7001	5 10	V 1 1 111	911	uIII	Table	Number			1	
	Fax +44 (0) 1283 554422														

SOCOTEC UK Ltd Environmental Chemistry Analytical and Deviating Sample Overview

Customer SOCOTEC UK Doncaster Site A8015-18 VPI Immingham Consignment No S75795

Date Logged 28-Jun-2018

Report No S187204

In-House Report Due 04-Jul-2018

Please note the results for any subcontracted analysis (identified with a '^') is likely to take up to an additional five working days.

	suits for any subcontracted analy	MethodID	CustServ	Dep.Opt	Í		ICPACIDS	ICPBRE	ICPWSS	KONECL	KoneNO3	ORGMAT	TSBRE1	WSLM50
ID Number	Description	Sampled	REPORT A	DO CI if pH<5.5	DO Mg if SO4(W)>3000	DO NO3 if pH<5.5	SO4 (acid sol)	Magnesium (BRE)	SO4 (H2O sol) mg/l	Chloride:(2:1)	Nitrate (BRE 2:1): mg/l	Organic Matter %	Total Sulphur.	рН (BS1377)
							✓		✓					
CL/1911581	TT02 2.00-2.15	D	D	D	D	D	D	D	D	D	D		D	D
CL/1911582	TT03 1.30-1.60	D	D									D		
CL/1911583	BH5 4.00-4.45	D	D				D	D	D	D	D		D	D
CL/1911584	BH6 0.00-0.30	D	D									D		
CL/1911585	TP02 3.40-3.50	D	D									D		
CL/1911586	TP6 1.00-1.20	D	D									D		
CL/1911587	TP09 0.80-1.00	D	D				D	D	D	D	D		D	D
CL/1911588	BH1 0.45	D	D									D		
CL/1911589	BH1 1.00-1.20	D	D				D	D	D	D	D		D	D
CL/1911590	BH2 2.20-2.70	D	D				D	D	D	D	D		D	D
CL/1911591	BH2 5.70-6.15	D	D				D	D	D	D	D		D	D

Note: We will endeavour to prioritise samples to complete analysis within holding time; however any delay could result in samples becoming deviant whilst being processed in the laboratory.

If sampling dates are missing or matrices unclassified then results will not be ISO 17025 accredited. Please contact us as soon as possible to provide missing information in order to reinstate accreditation.

Deviating Sample Key

- A The sample was received in an inappropriate container for this analysis
- The sample was received without the correct preservation for this analysis
- C Headspace present in the sample container
- D The sampling date was not supplied so holding time may be compromised applicable to all analysis
- E Sample processing did not commence within the appropriate holding time
- Sample processing did not commence within the appropriate handling time

Requested Analysis Key

Analysis Required

Analysis dependant upon trigger result - Note: due date may be affected if triggered

No analysis scheduled

Analysis Subcontracted - Note: due date may vary

Report Number: EFS/187204

Method Descriptions

Matrix	MethodID	Analysis	Method Description
		Basis	
Soil	ICPACIDS	Oven Dried	Determination of Total Sulphate in soil samples by Hydrochloric
		@ < 35°C	Acid extraction followed by ICPOES detection
Soil	ICPWSS	Oven Dried	Determination of Water Soluble Sulphate in soil samples by water
		@ < 35°C	extraction followed by ICPOES detection
Soil	ORGMAT	Oven Dried	Acid Dichromate oxidation of the sample followed by colorimetric
		@ < 35°C	analysis of the extract
Soil	TSBRE1	Oven Dried	Determination of Total Carbon and/or Total Sulphur in solid
		@ < 35°C	samples by high temperature combustion/infrared detection
Soil	WSLM50	Oven Dried	Determination of pH of 2.5:1 deionised water to soil extracts using
		@ < 35°C	pH probe.

Report Notes

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.
 All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity.
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l

Nil: Where "Nil" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/l

Asbestos Analysis

CH Denotes Chrysotile
CR Denotes Crocidolite
AM Denotes Amosite
TR Denotes Tremolite
AC Denotes Actinolite
AN Denotes Anthophylite

NAIIS No Asbestos Identified in Sample **NADIS** No Asbestos Detected In Sample

Symbol Reference

- ^ Sub-contracted analysis.
- **\$\$** Unable to analyse due to the nature of the sample
- ¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.

This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

- ¥ Results for guidance only due to possible interference
- & Blank corrected result
- I.S Insufficient sample to complete requested analysis
- I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

N.F No Flow

NS Information Not Supplied

Req Analysis requested, see attached sheets for results

- **Þ** Raised detection limit due to nature of the sample
- * All accreditation has been removed by the laboratory for this result
- # MCERTS accreditation has been removed for this result
- § accreditation has been removed for this result as it is a non-accredited matrix

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

Page 5 of 5 EFS/187204 Ver. 1

Sample Descriptions

Client : SOCOTEC UK Doncaster
Site : A8015-18 VPI Immingham

Report Number: \$18_7204

Note: major constituent in upper case

Lab ID Number	Client ID	Note: major constituent in upper case Description
		SILT
CL/1911581 CL/1911582	TT02 B 6 2.00 TT03 B 4 1.30	SILT
CL/1911583	BH5 B 18 4.00	CLAY
CL/1911584	BH6 B 1 0.00	GRAVEL
CL/1911585	TP02 B 10 3.40	CLAY
CL/1911586	TP6 B 6 1.00	CLAY
CL/1911587	TP09 B 6 0.80	CLAY
CL/1911588	BH1 D 3 0.45	SILT
CL/1911589	BH1 B 5 1.00	CLAY
CL/1911590	BH2 B 13 2.20	CLAY
CL/1911591	BH2 B 31 5.70	CLAY
	1	
	1	

Appendix A Page 1 of 1 09/07/2018EFS/187204 Ver. 1

TEST REPORT

Report No. EFS/187902 (Ver. 1)

SOCOTEC UK Doncaster Askern Road Carcroft Doncaster South Yorkshire DN6 8DG

Site: A8015-18 VPI Immingham

The 1 sample described in this report were registered for analysis by SOCOTEC UK Limited on 19-Jul-2018. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 25-Jul-2018

The following tables are contained in this report:

Table 1 Main Analysis Results (Page 2)
Analytical and Deviating Sample Overview (Page 3)
Table of Method Descriptions (Page 4)
Table of Report Notes (Page 5)
Table of Sample Descriptions (Appendix A Page 1 of 1)

On behalf of SOCOTEC UK Lim (

Tim Barnes

Operations Director Energy & Waste Services

Tests marked '^' have been subcontracted to another laboratory.

Where samples have been flagged as deviant on the Analytical and Deviating Sample Overview, for any reason, the data may not be representative of the sample at the point of sampling and the validity of the data may be affected.

SOCOTEC UK Limited accepts no responsibility for any sampling not carried out by our personnel.

Date of Issue: 25-Jul-2018

	Units :	%										
	Method Codes :	ORGMAT										
	Method Reporting Limits :	0.1										
_												
LAB ID Number	S	Organic Matter %										
0	Client Sample Description Sample Date	ani										
l E	Client Sample Description	ი ≤										
ber	Dat	atte										
CL/	(D)	ÿr %										
_												
1914695	BH1 D 7 1.65	1.1										
	2 2 733											
		Client Na		50007	EC IIV Denocata				Com	مام مام	-lucio	
	SOCOTEC C	Client Na	aille	30001	EC UK Doncaste	ı			Sam	ple Ana	แหรเร	
		Contact		Tim Cliffo	rd							
	Brothy Business Park, Ashby Road	Jonata		010	· 			Date Pri	ntod		25-Jul-2018	
	Bretby Business Park, Ashby Road											
	Burton-on-Trent, Staffordshire, DE15 0YZ		A8015-18 VPI Immingham					Report N			EFS/187902	
	Tel +44 (0) 1283 554400		Aud 19-10 vi i illillilligilalli					Table Number 1				
	Fax +44 (0) 1283 554422											
		1										

Report No

SOCOTEC UK Ltd Environmental Chemistry Analytical and Deviating Sample Overview

Customer SOCOTEC UK Doncaster Site A8015-18 VPI Immingham

S187902

Consignment No S75653 Date Logged 19-Jul-2018

In-House Report Due 25-Jul-2018

Please note the results for any subcontracted analysis (identified with a '^') is likely to take up to an additional five working days.

		(
		MethodID	CustServ	ORGMAT
ID Number	Description	Sampled	REPORT A	Organic Matter %
CL/1914695	BH1 1.65-1.80	D	D	D

Note: We will endeavour to prioritise samples to complete analysis within holding time; however any delay could result in samples becoming deviant whilst being processed in the laboratory.

If sampling dates are missing or matrices unclassified then results will not be ISO 17025 accredited. Please contact us as soon as possible to provide missing information in order to reinstate accreditation.

Deviating Sample Key

- A The sample was received in an inappropriate container for this analysis
- The sample was received without the correct preservation for this analysis
- Headspace present in the sample container
- The sampling date was not supplied so holding time may be compromised applicable to all analysis
- Sample processing did not commence within the appropriate holding time
- Sample processing did not commence within the appropriate handling time

Requested Analysis Key

Analysis Required

Analysis dependant upon trigger result - Note: due date may be affected if triggered

No analysis scheduled

Analysis Subcontracted - Note: due date may vary

Report Number: EFS/187902

Method Descriptions

Matrix	MethodID	Analysis Basis	Method Description
Soil	ORGMAT	Oven Dried	Acid Dichromate oxidation of the sample followed by colorimetric
		@ < 35°C	analysis of the extract

Report Notes

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.
 All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity.
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l

Nil: Where "Nil" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/l

Asbestos Analysis

CH Denotes Chrysotile
CR Denotes Crocidolite
AM Denotes Amosite
TR Denotes Tremolite
AC Denotes Actinolite
AN Denotes Anthophylite

NAIIS No Asbestos Identified in Sample **NADIS** No Asbestos Detected In Sample

Symbol Reference

- ^ Sub-contracted analysis.
- **\$\$** Unable to analyse due to the nature of the sample
- ¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.

This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

- ¥ Results for guidance only due to possible interference
- & Blank corrected result
- I.S Insufficient sample to complete requested analysis
- I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

N.F No Flow

NS Information Not Supplied

Req Analysis requested, see attached sheets for results

- **Þ** Raised detection limit due to nature of the sample
- * All accreditation has been removed by the laboratory for this result
- # MCERTS accreditation has been removed for this result
- § accreditation has been removed for this result as it is a non-accredited matrix

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

Page 5 of 5 EFS/187902 Ver. 1

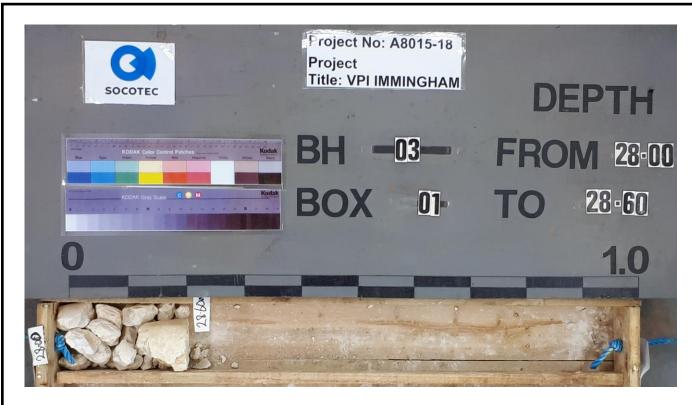
Sample Descriptions

Client : SOCOTEC UK Doncaster
Site : A8015-18 VPI Immingham

Report Number: \$18_7902

Note: major constituent in upper case

1		Note: major constituent in upper case
Lab ID Number	Client ID	Description
CL/1914695	BH1 D 7 1.65	Brown Stone CLAY


Appendix A Page 1 of 1 25/07/2018EFS/187902 Ver. 1

APPENDIX E PHOTOGRAPHS

Rotary Cores Plate 1 to 6
Trial Pits Plate 7 to 21

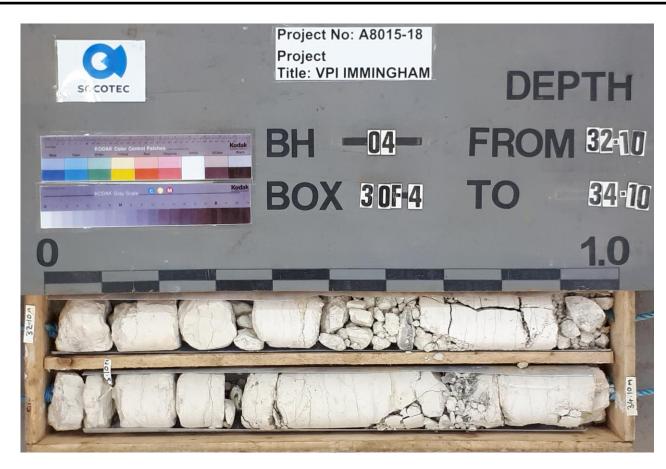
Notes:

Project VPI IMMINGHAM

Proiect No. A8015-18

Project No. A8015-16
Carried out for AECOM

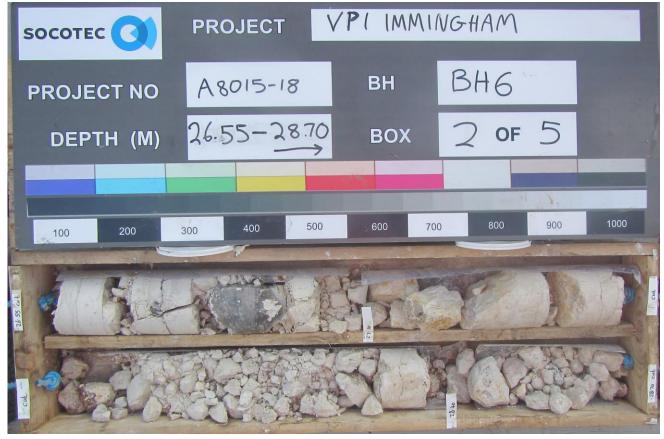
Notes:


Project

VPI IMMINGHAM

Project No.
Carried out for

A8015-18 AECOM Plate


Project VPI IMMINGHAM Plate

Project No. A8015-18 Carried out for AECOM

Notes:

Notes:

Project

VPI IMMINGHAM

Project No. A8015-18 Carried out for AECOM Plate

Notes:

Project

VPI IMMINGHAM

Project No. Carried out for A8015-18 AECOM Plate

Notes:

Project VPI IMMINGHAM

Project No. A8015-18
Carried out for AECOM

Plate

6

Notes:

Project

VPI IMMINGHAM

Project No. Carried out for A8015-18 AECOM Plate

TP1 Spoil

Notes:

Project

VPI IMMINGHAM

Project No. Carried out for A8015-18 AECOM Plate

TP2 Spoil

Notes:

Project

VPI IMMINGHAM

Project No. Carried out for A8015-18 AECOM Plate

TP3 Spoil

Notes:

Project

VPI IMMINGHAM

Project No. Carried out for A8015-18 AECOM Plate

Notes:

Project

VPI IMMINGHAM

Project No. Carried out for A8015-18 AECOM Plate

TP6 Spoil

TP9 Spoil

Notes:

Project
Project No.
Carried out for

VPI IMMINGHAM A8015-18 AECOM Plate

TP10 Spoil

Photographs

Notes:

Project

VPI IMMINGHAM

Project No. Carried out for A8015-18 AECOM Plate

19

Photographs

TT02 Spoil

Photographs

Notes:

Project

VPI IMMINGHAM

Project No. Carried out for A8015-18 AECOM Plate

21

Appendix D Laboratory Certifications

Registered Address : Exova (UK) Ltd, Lochend Industrial Estate, Newbridge, Midlothian, EH28 8PL

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA

AECOM 2 City Walk Leeds LS11 9AR

Tel: +44 (0) 1244 833780 Fax: +44 (0) 1244 833781

Attention: Alex Freeman

Date: 23rd August, 2018

Your reference: 60569745

Our reference : Test Report 18/7222 Batch 1 18/5333 Batch 1 18/5166 Batch 1 18/5455 Batch 1 18/5

Location: VP1 (TLOR)

Date samples received :

Status: Final report

Issue:

Compiled By:

5.600

Simon Gomery BSc

Project Manager

Client Name: AECOM

Reference: 60569745 Location: VP1 (TLOR)

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

Report : Solid

Contact: Alex Freeman

			ı	ı		ı					1		
J E Job No.	18/5166	18/5166	18/5166	18/5166	18/5166	18/5166	18/5166	18/5333	18/5333	18/5333			
J E Sample No.	1-3	4-6	7-9	10-12	13-15	16-18	19-21	1-3	4-6	7-9			
Sample ID	BH06	BH01	TT03	TT02	WS01	WS04	TP10	TT01	TP09	TP07			
Depth	0.40-0.70	0.45-0.70	0.00-1.40	0.50-1.20	1.00-1.25	0.50	0.40-0.60	1.70-1.90	0.30-0.40	1.30-1.60	Please se	e attached n	otes for all
COC No / misc												ations and a	
Containers	VJB	VJB	VJB	VJB	VJB	VJB	VJB	VJB	VJB	VJB			
Sample Date	05/04/2018	05/04/2018	06/04/2018	06/04/2018	06/04/2018	06/04/2018	06/04/2018	09/04/2018	09/04/2018	09/04/2018			
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil			
Batch Number	1	1	1	1	1	1	1	1	1	1			
Date of Receipt					07/04/2018		07/04/2018				LOD/LOR	Units	Method No.
Arsenic **M	10.7	NDP	9.8	10.8	NDP	8.9	10.7	9.0	6.8	9.4	<0.5	mg/kg	TM30/PM15
Barium **M	163	NDP	98	144	NDP	169	112	112	65	127	<1	mg/kg	TM30/PM15
Beryllium	4.2	NDP	1.0	1.5	NDP	1.3	1.3	1.4	0.7	1.3	<0.5	mg/kg	TM30/PM15
Cadmium *M	<0.1	NDP	0.1	0.2	NDP	<0.1	0.2	0.2	0.3	0.2	<0.1	mg/kg	TM30/PM15
Chromium #M	81.5	NDP	106.0	75.9	NDP	85.2	87.6	52.6	44.9	69.0	<0.5	mg/kg	TM30/PM15
Copper #M	13	NDP	13	21	NDP	15	21	16	11	9	<1	mg/kg	TM30/PM15
Lead #M	15	NDP NDP	19	20	NDP NDP	16	26	13	11	15	<5	mg/kg	TM30/PM15
Mercury **M Nickel **M	<0.1 19.7	NDP	<0.1 23.0	<0.1 30.9	NDP	<0.1 30.1	<0.1 26.4	<0.1 32.4	<0.1 19.0	<0.1 28.6	<0.1 <0.7	mg/kg mg/kg	TM30/PM15 TM30/PM15
Selenium **M	2	NDP	1	<1	NDP	2	<1	2	2	2	<1	mg/kg	TM30/PM15
Total Sulphate as SO4 #M	-	NDP	-	-	NDP	-	-	-	-	-	<50	mg/kg	TM50/PM29
Vanadium	79	NDP	56	62	NDP	54	56	46	30	46	<1	mg/kg	TM30/PM15
Water Soluble Boron #M	2.5	NDP	1.2	1.7	NDP	2.1	1.5	1.7	0.9	1.0	<0.1	mg/kg	TM74/PM32
Zinc #M	53	NDP	57	71	NDP	67	106	61	73	62	<5	mg/kg	TM30/PM15
Arsenic	-	21.0	-	-	16.3	-	-	-	-	-	<0.5	mg/kg	TM30/PM62
Barium Beryllium	-	504 2.1	-	-	310 1.9	-	-	-	-	-	<1 <0.5	mg/kg mg/kg	TM30/PM62 TM30/PM62
Cadmium	-	3.1	-	-	1.6	-	-	-	-	-	<0.1	mg/kg	TM30/PM62
Chromium	-	79.8	-	-	68.7	-	-	-	-	-	<0.5	mg/kg	TM30/PM62
Copper	-	148	-	-	113	-	-	-	-	-	<1	mg/kg	TM30/PM62
Lead	-	124	-	-	73	-	-	-	-	-	<5	mg/kg	TM30/PM62
Mercury	-	1.7	-	-	<0.1	-	-	-	-	-	<0.1	mg/kg	TM30/PM62
Nickel	-	163.1 10	-	-	92.4	-	-	-	-	-	<0.7	mg/kg	TM30/PM62 TM30/PM62
Selenium Total Sulphate as SO4	-	8841	-	-	10971	-	-	-	-	-	<1 <50	mg/kg mg/kg	TM50/PM29
Vanadium	-	338	-	-	231	-	-	-	-	-	<1	mg/kg	TM30/PM62
Water Soluble Boron	-	2.9	-	-	2.6	-	-	-	-	-	<0.1	mg/kg	TM74/PM61
Zinc	-	1275	-	-	663	-	-	-	-	-	<5	mg/kg	TM30/PM62
VOC TICs	-	See Attached	-	-	ND	-	-	-	-	-		None	TM15/PM10
Methyl Tertiary Butyl Ether ***	-	<6	-	-	<6	-	-	-	-	-	<6	ug/kg	TM15/PM10
Benzene #M	-	46	-	-	47	-	-	-	-	-	<5	ug/kg	TM15/PM10
Toluene #M	-	7	-	-	15	-	-	-	-	-	<3	ug/kg	TM15/PM10
Ethylbenzene **M p/m-Xylene **M	-	60 114	-	-	31 89	-	-	-	-	-	<3 <4	ug/kg ug/kg	TM15/PM10 TM15/PM10
o-Xylene *M	-	36	-	-	31	-	-	-	-	-	<4	ug/kg	TM15/PM10
Surrogate Recovery Toluene D8	-	57	-	-	57	-	-	-	-	-	<0	%	TM15/PM10
Surrogate Recovery 4-Bromofluorobenzene	-	59	-	-	55	-	-	-	-	-	<0	%	TM15/PM10
SVOC TICs	-	See Attached _{AB}	-	-	See Attached _{AB}	-	-	-	-	-		None	TM16/PM8

Client Name: AECOM

Reference: 60569745 Location: VP1 (TLOR)

Contact: Alex Freeman

Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

LE LLIN.	10/5100	10/5100	10/5100	10/5100	10/5100	10/5100	10/5100	40/5000	40/5000	40/5000	1		
J E Job No.	18/5166	18/5166	18/5166	18/5166	18/5166	18/5166	18/5166	18/5333	18/5333	18/5333			
J E Sample No.	1-3	4-6	7-9	10-12	13-15	16-18	19-21	1-3	4-6	7-9			
Sample ID	BH06	BH01	TT03	TT02	WS01	WS04	TP10	TT01	TP09	TP07			
Depth	0.40-0.70	0.45-0.70	0.00-1.40	0.50-1.20	1.00-1.25	0.50	0.40-0.60	1.70-1.90	0.30-0.40	1.30-1.60		e attached r	
COC No / misc											abbrev	ations and a	cronyms
Containers	VJB	VJB	VJB	VJB	VJB	VJB	VJB	VJB	VJB	VJB			
Sample Date	05/04/2018	05/04/2018	06/04/2018	06/04/2018	06/04/2018	06/04/2018	06/04/2018	09/04/2018	09/04/2018	09/04/2018			
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil			
													1
Batch Number	1	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method No.
Date of Receipt	07/04/2018	07/04/2018	07/04/2018	07/04/2018	07/04/2018	07/04/2018	07/04/2018	11/04/2018	11/04/2018	11/04/2018			INO.
TPH CWG													
Aliphatics													
>C5-C6 #M	-	<0.1 ^{sv}	-	-	<0.1 sv	-	-	-	-	-	<0.1	mg/kg	TM36/PM12
>C6-C8 #M	-	<0.1 ^{sv}	-	-	0.2 sv	-	-	-	-	-	<0.1	mg/kg	TM36/PM12
>C8-C10	-	1.0 sv	-	-	1.1 ^{sv}	-	-	-	-	-	<0.1	mg/kg	TM36/PM12
>C10-C12 **M	-	588.8	-	-	51.8	-	-	-	-	-	<0.2	mg/kg	TM5/PM8/PM16
>C12-C16 **M	-	1627	-	-	343	-	-	-	-	-	<4	mg/kg	TM5/PM8/PM16
>C16-C21 **M	-	2885	-	-	977	-	-	-	-	-	<7	mg/kg	TM5/PM8/PM16
>C21-C35 **M	-	5172	-	-	2523	-	-	-	-	-	<7	mg/kg	TM5/PM8/PM16
Total aliphatics C5-35	-	10274	-	-	3896	-	-	-	-	-	<19	mg/kg	TM5/TM38/PM8/PM12/PM1
Aromatics													
>C5-EC7#	-	<0.1 ^{sv}	-	-	<0.1 sv	-	-	-	-	-	<0.1	mg/kg	TM36/PM12
>EC7-EC8#	-	<0.1 sv	-	-	<0.1 sv	-	-	-	-	-	<0.1	mg/kg	TM36/PM12
>EC8-EC10 #M	-	<0.1 sv	-	-	<0.1 sv	-	-	-	-	-	<0.1	mg/kg	TM36/PM12
>EC10-EC12#	-	92.9	-	-	10.3	-	-	-	-	-	<0.2	mg/kg	TM5/PM8/PM16
>EC12-EC16#	-	809	-	-	104	-	-	-	-	-	<4	mg/kg	TM5/PM8/PM16
>EC16-EC21 #	-	3404	-	-	629	-	-	-	-	-	<7	mg/kg	TM5/PM8/PM16
>EC21-EC35#	-	8205	-	-	3203	-	-	-	-	-	<7	mg/kg	TM5/PM8/PM16
Total aromatics C5-35#	-	12511	-	-	3946	-	-	-	-	-	<19	mg/kg	TM5/TM36/PM8/PM12/PM1
Total aliphatics and aromatics(C5-35)	-	22785	-	-	7842	-	-	-	-	-	<38	mg/kg	TM5/TM38/PM8/PM12/PM1
_													
Natural Moisture Content	20.9	NDP	15.5	20.5	NDP	17.5	17.1	21.1	11.9	13.7	<0.1	%	PM4/PM0
Ammoniacal Nitrogen as N	-	-	-	-	-	-	-	-	-	-	<0.6	mg/kg	TM38/PM20
Ammoniacal Nitrogen as NH4	0.8	39.3	<0.6	<0.6	30.5	<0.6	1.5	<0.6	<0.6	<0.6	<0.6	mg/kg	TM38/PM20
Chloride #M	-	NDP	-	-	NDP	-	-	-	-	-	<2	mg/kg	TM38/PM20
Chloride (2:1 Ext BRE)	-	-	-	-	- 00	-	-	-	-	-	<0.002	g/l ma/ka	TM38/PM60
Chloride Fluoride	-	39 4.5	-	-	89 3.7	-	-	-	-	-	<2 <0.3	mg/kg mg/kg	TM173/PM20
Hexavalent Chromium #	<0.3	4.5 <0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3		TM38/PM20
Nitrate as N	- <0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	mg/kg	TM38/PM20
Nitrate as NO3	-	NDP	-	-	NDP	-	-	-	-	-	<2.5 <2.5	mg/kg	TM38/PM20
Nitrate as NO3	-	<2.5	-	-	<2.5	-	-	-	-	-	<2.5	mg/kg mg/kg	TM38/PM60
Nitrate as N	-	<2.5	-	-	<2.5	-	-	-	-	-	<2.5	mg/kg	TM38/PM60
Sulphate as SO4 (2:1 Ext) #M		-	-	-	-	-	-	_	-	-	<0.0015	g/l	TM38/PM20
Chromium III	81.5	NDP	106.0	75.9	NDP	85.2	87.6	52.6	44.9	69.0	<0.0015	mg/kg	NONE/NONE
Chromium III	-	79.8	-	-	68.7	-	-	-	-	-	<0.5	mg/kg	NONE/NONE
55IIIIGIII III	•	, 5.0	-	-	55.7	-	-	-	-	-	70.0	mg/kg	
Organic Matter	1.2	NDP	1.5	2.1	NDP	1.0	2.0	0.7	0.7	0.8	<0.2	%	TM21/PM24
- g=oao.			0				2.0	J.,	5.7	5.5	-5.2	,,,	
Sulphide	-	53	-	_	25	-	-	-	-	_	<10	mg/kg	TM107/PM119
											1.0	9,119	
pH #M	8.07	7.31	7.69	7.78	7.29	8.50	7.26	7.97	8.46	8.25	<0.01	pH units	TM73/PM1
Sample Type	Clay	NDP	Clay	Clay	NDP	Clay	Clay	Clay	Clay	Clay		None	PM13/PM0

Client Name: AECOM

Reference: 60569745 Location: VP1 (TLOR)

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

Report : Solid

Contact: Alex Freeman

											ı		
J E Job No.	18/5166	18/5166	18/5166	18/5166	18/5166	18/5166	18/5166	18/5333	18/5333	18/5333			
J E Sample No.	1-3	4-6	7-9	10-12	13-15	16-18	19-21	1-3	4-6	7-9			
Sample ID	BH06	BH01	TT03	TT02	WS01	WS04	TP10	TT01	TP09	TP07			
Depth COC No / misc	0.40-0.70	0.45-0.70	0.00-1.40	0.50-1.20	1.00-1.25	0.50	0.40-0.60	1.70-1.90	0.30-0.40	1.30-1.60		e attached no	
Containers		VJB	VJB	VJB	VJB	VJB	VJB	VJB	VJB	VJB			
Sample Date	05/04/2018	05/04/2018	06/04/2018	06/04/2018	06/04/2018	06/04/2018	06/04/2018	09/04/2018	09/04/2018	09/04/2018			
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil			
Batch Number	1	1	1	1	1	1	1	1	1	1			Method
Date of Receipt	07/04/2018	07/04/2018	07/04/2018	07/04/2018	07/04/2018	07/04/2018	07/04/2018	11/04/2018	11/04/2018	11/04/2018	LOD/LOR	Units	No.
Sample Colour	Medium Brown	NDP	Medium Brown	Medium Brown	NDP	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown		None	PM13/PM0
Other Items	stones	NDP	, sand	carbon, sand, vegetation	NDP	chalk	sand	chalk, carbon	vegetation, stones	sand, stone		None	PM13/PM0

Client Name: AECOM

Reference: 60569745 Location: VP1 (TLOR)

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

Report : Solid

Contact: Alex Freeman

		1	ı	ı	•	ı		1	1	1	ī		
J E Job No.	18/5333	18/5333	18/5333	18/5333	18/5333	18/5333	18/5384	18/5384	18/5384	18/5384			
J E Sample No.	13-15	16-18	19-21	22-24	25-27	28-29	1-3	7-9	13-15	19-21			
Sample ID	TP08	WS02	TP05	WS05	TP04	WS03	TP06	TP01	TP02	WS06			
Depth	0.20-0.50	0.00-0.50	0.50-0.70	0.50-1.00	0.80-1.00	0.00-1.20	0.40-0.60	0.70-0.90	0.30-0.50	0.00-1.20	Please se	e attached n	otes for all
COC No / misc												ations and a	
Containers	VJB	VJB	VJB	VJB	VJB	VВ	VJB	VJB	VJB	VJB			
Sample Date	09/04/2018	10/04/2018	10/04/2018	10/04/2018	10/04/2018	10/04/2018	10/04/2018	11/04/2018	11/04/2018	11/04/2018			
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil			
Batch Number	1	1	1	1	1	1	1	1	1	1			
Date of Receipt			11/04/2018			11/04/2018	12/04/2018		12/04/2018		LOD/LOR	Units	Method No.
Arsenic #M	7.2	11.4	9.0	10.5	7.4	7.3	NDP	NDP	NDP	6.4	<0.5	mg/kg	TM30/PM15
Barium **M	117	121	162	147	116	169	NDP	NDP	NDP	133	<1	mg/kg	TM30/PM15
Beryllium	1.4	1.3	1.3	1.5	1.1	1.5	NDP	NDP	NDP	1.4	<0.5	mg/kg	TM30/PM15
Cadmium #M	<0.1	0.3	0.2	0.4	0.2	0.2	NDP	NDP	NDP	0.2	<0.1	mg/kg	TM30/PM15
Chromium #M	81.4	60.0	60.4	71.5	64.0	65.2	NDP	NDP	NDP	50.1	<0.5	mg/kg	TM30/PM15
Copper *M	15	20	15	28	11	45	NDP	NDP	NDP	10	<1	mg/kg	TM30/PM15
Lead #M	15	22	11	34	9	42	NDP NDP	NDP	NDP NDP	10	<5	mg/kg	TM30/PM15 TM30/PM15
Mercury ^{#M} Nickel ^{#M}	<0.1 37.3	<0.1 36.1	<0.1 28.2	<0.1 29.8	<0.1 26.5	0.2 45.8	NDP	NDP NDP	NDP	<0.1 33.3	<0.1 <0.7	mg/kg mg/kg	TM30/PM15
Selenium **M	<1	1	2	2	2	<1	NDP	NDP	NDP	<1	<1	mg/kg	TM30/PM15
Total Sulphate as SO4 #M	-	701	-	2252	-	6510	NDP	NDP	NDP	-	<50	mg/kg	TM50/PM29
Vanadium	52	67	45	69	39	87	NDP	NDP	NDP	45	<1	mg/kg	TM30/PM15
Water Soluble Boron #M	1.2	1.8	1.6	2.2	1.5	3.4	NDP	NDP	NDP	1.0	<0.1	mg/kg	TM74/PM32
Zinc **M	66	131	56	149	50	231	NDP	NDP	NDP	113	<5	mg/kg	TM30/PM15
Arsenic	-	-	-	-	-	-	10.3	26.3	21.6	-	<0.5	mg/kg	TM30/PM62
Barium Beryllium	-	-	-	-	-	-	118	369 1.9	337 1.8	-	<1 <0.5	mg/kg mg/kg	TM30/PM62 TM30/PM62
Cadmium	-	- -	-	-	-	-	0.3	1.8	0.8	-	<0.1	mg/kg	TM30/PM62
Chromium	-	-	-	-	-	-	36.0	75.1	63.4	-	<0.5	mg/kg	TM30/PM62
Copper	-	-	-	-	-	-	18	205	158	-	<1	mg/kg	TM30/PM62
Lead	-	-	-	-	-	-	28	103	71	-	<5	mg/kg	TM30/PM62
Mercury	-	-	-	-	-	-	<0.1	2.3	1.7	-	<0.1	mg/kg	TM30/PM62
Nickel	-	-	-	-	-	-	29.7	121.9	81.6	-	<0.7	mg/kg	TM30/PM62
Selenium Total Sulphate as SO4	-	-	-	-	-	-	<1 856	4 16251 _{AB}	4 6783	-	<1 <50	mg/kg mg/kg	TM30/PM62 TM50/PM29
Vanadium	-	-	-	-	-	-	58	275	186	-	<1	mg/kg	TM30/PM62
Water Soluble Boron	-	-	-	-	-	-	4.4	3.4	3.6	-	<0.1	mg/kg	TM74/PM61
Zinc	-	-	-	-	-	-	84	947	623	-	<5	mg/kg	TM30/PM62
VOC TICs	-	ND	-	ND	-	ND	ND	See Attached	ND	-		None	TM15/PM10
Methyl Tertiary Butyl Ether ^{#M} Benzene ^{#M}	-	<6 <5	-	<6 <5	-	<6 <5	<6 <5	<6 45	<6 60	-	<6 <5	ug/kg ug/kg	TM15/PM10 TM15/PM10
Toluene #M	-	<3	-	<3	-	<3	<3	5	19	-	<3	ug/kg	TM15/PM10
Ethylbenzene #M	-	<3	-	<3	-	<3	<3	39	121	-	<3	ug/kg	TM15/PM10
p/m-Xylene #M	-	<4	-	<4	-	9	<4	213	115	-	<4	ug/kg	TM15/PM10
o-Xylene #M	-	<4	-	<4	-	<4	<4	49	54	-	<4	ug/kg	TM15/PM10
Surrogate Recovery Toluene D8	-	93	-	92	-	78	85	52	52	-	<0	%	TM15/PM10
Surrogate Recovery 4-Bromofluorobenzene	-	86	-	77	-	64	74	58	54	-	<0	%	TM15/PM10
SVOC TICs	-	ND	-	ND	-	ND	ND	See Attached	See Attached	-		None	TM16/PM8
						=							

Client Name: AECOM

Reference: 60569745 Location: VP1 (TLOR)

Contact: Alex Freeman

Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

LE LL M.	40/5000	10/5000	10/5000	10/5000	40/5000	10/5000	10/5001	10/5001	10/5004	40/5004	1		
J E Job No.	18/5333	18/5333	18/5333	18/5333	18/5333	18/5333	18/5384	18/5384	18/5384	18/5384			
J E Sample No.	13-15	16-18	19-21	22-24	25-27	28-29	1-3	7-9	13-15	19-21			
Sample ID	TP08	WS02	TP05	WS05	TP04	WS03	TP06	TP01	TP02	WS06			
Depth	0.20-0.50	0.00-0.50	0.50-0.70	0.50-1.00	0.80-1.00	0.00-1.20	0.40-0.60	0.70-0.90	0.30-0.50	0.00-1.20		e attached r	
COC No / misc											abbrev	ations and a	cronyms
Containers	VJB	VJB	VJB	VJB	VJB	VB	VJB	VJB	VJB	VJB			
Sample Date	09/04/2018	10/04/2018	10/04/2018	10/04/2018	10/04/2018	10/04/2018	10/04/2018	11/04/2018	11/04/2018	11/04/2018			
Sample Type	Soil	Soil	Soil	Soil		Soil	Soil	Soil	Soil	Soil			
					Soil								
Batch Number	1	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method
Date of Receipt	11/04/2018	11/04/2018	11/04/2018	11/04/2018	11/04/2018	11/04/2018	12/04/2018	12/04/2018	12/04/2018	12/04/2018			No.
TPH CWG													
Aliphatics													
>C5-C6 #M	-	<0.1	-	<0.1	-	<0.1	<0.1	<0.1 ^{SV}	<0.1 ^{SV}	-	<0.1	mg/kg	TM36/PM12
>C6-C8 #M	-	<0.1	-	<0.1	-	<0.1	<0.1	<0.1 ^{SV}	1.3 sv	-	<0.1	mg/kg	TM36/PM12
>C8-C10	-	<0.1	-	<0.1	-	<0.1	<0.1	0.3 ^{sv}	5.6 sv	-	<0.1	mg/kg	TM36/PM12
>C10-C12 **M	-	<0.2	-	4.9	-	9.7	<0.2	154.5	325.9	-	<0.2	mg/kg	TM5/PM8/PM16
>C12-C16 #M	-	9	-	52	-	101	<4	789	925	-	<4	mg/kg	TM5/PM8/PM16
>C16-C21 **M	-	26	-	256	-	367	<7	1715	1534	-	<7	mg/kg	TM5/PM8/PM16
>C21-C35 **M	-	82	-	675	-	876	<7	3414	3001	-	<7	mg/kg	TM5/PM8/PM16
Total aliphatics C5-35	-	117	-	988	-	1354	<19	6073	5793	-	<19	mg/kg	TM5/TM36/PM8/PM12/PM1
Aromatics													
>C5-EC7#	-	<0.1	-	<0.1	-	<0.1	<0.1	<0.1 ^{SV}	<0.1 ^{SV}	-	<0.1	mg/kg	TM36/PM12
>EC7-EC8#	-	<0.1	-	<0.1	-	<0.1	<0.1	<0.1 ^{SV}	<0.1 ^{SV}	-	<0.1	mg/kg	TM36/PM12
>EC8-EC10 #M	-	<0.1	-	<0.1	-	<0.1	<0.1	<0.1 sv	<0.1 sv	-	<0.1	mg/kg	TM36/PM12
>EC10-EC12#	-	<0.2	-	<0.2	-	<0.2	<0.2	33.9	103.8	-	<0.2	mg/kg	TM5/PM8/PM16
>EC12-EC16#	-	<4	-	32	-	37	<4	358	688	-	<4	mg/kg	TM5/PM8/PM16
>EC16-EC21 #	-	17	-	322	-	357	<7	1663	1953	-	<7	mg/kg	TM5/PM8/PM16
>EC21-EC35#	-	158	-	1581	-	1790	<7	5036	5372	-	<7	mg/kg	TM5/PM8/PM16
Total aromatics C5-35#	-	175	-	1935	-	2184	<19	7091	8117	-	<19	mg/kg	TM5/TM38/PM8/PM12/PM1
Total aliphatics and aromatics(C5-35)	-	292	-	2923	-	3538	<38	13164	13910	-	<38	mg/kg	TM5/TM38/PM8/PM12/PM1
Natural Moisture Content	22.0	20.7	23.8	22.0	17.6	34.3	NDP	NDP	NDP	20.4	<0.1	%	PM4/PM0
													T1 400 /D1 400
Ammoniacal Nitrogen as N	-	-	-	-	-	-	-	- 44.7	-	-	<0.6	mg/kg	TM38/PM20
Ammoniacal Nitrogen as NH4	<0.6	2.6	<0.6	14.2	<0.6	20.2	8.3	41.7	13.5	<0.6	<0.6	mg/kg	TM38/PM20
Chloride #M	-	1582	-	54	-	58	NDP 0.050	NDP 0.035	NDP 6.546	-	<2	mg/kg	TM38/PM20
Chloride (2:1 Ext BRE)	-	-	-	-	-	-	0.050	0.035	6.546	-	<0.002	g/l ma/ka	TM38/PM60
Chloride Fluoride	-	0.9	-	3.7	-	2.3	6.9	8.0	16.4	-	<2 <0.3	mg/kg mg/kg	TM173/PM20
Hexavalent Chromium #	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	mg/kg	TM38/PM20
Nitrate as N	-	-	-	-	-	-	-	-	-	-	<2.5	mg/kg	TM38/PM20
Nitrate as NO3	-	<2.5	-	<2.5	-	<2.5	NDP	NDP	NDP	-	<2.5	mg/kg	TM38/PM20
Nitrate as NO3	-	<2.5 -	-	- <2.5	-	-	<2.5	<2.5	<2.5	-	<2.5	mg/kg	TM38/PM60
Nitrate as N	-	_	_	-	-	-	-	-	-	-	<2.5	mg/kg	TM38/PM60
Sulphate as SO4 (2:1 Ext) #M	-	-	-	-	-	-	-	-	-	-	<0.0015	g/I	TM38/PM20
Chromium III	81.4	60.0	60.4	71.5	64.0	65.2	NDP	NDP	NDP	50.1	<0.5	mg/kg	NONE/NONE
Chromium III	-	-	-	-	-	-	-	-	-	-	<0.5	mg/kg	NONE/NONE
Organic Matter	0.7	2.0	1.0	3.9	0.6	7.9	NDP	NDP	NDP	0.6	<0.2	%	TM21/PM24
<u>.</u>	-	-	-			-							
Sulphide	-	<10	-	<100 _{AB}	-	53	<10	30	21	-	<10	mg/kg	TM107/PM119
				AD					• •			33	
pH #M	7.85	7.52	8.52	7.55	8.09	7.34	7.67	7.22	7.67	8.28	<0.01	pH units	TM73/PM11
Sample Type	Clay	Clay	Clay	Clay	Clay	Clay	NDP	NDP	NDP	Clay		None	PM13/PM0

Client Name: AECOM

Reference: 60569745 Location: VP1 (TLOR)

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

Report : Solid

Contact: Alex Freeman

											ı,		
J E Job No.	18/5333	18/5333	18/5333	18/5333	18/5333	18/5333	18/5384	18/5384	18/5384	18/5384			
J E Sample No.	13-15	16-18	19-21	22-24	25-27	28-29	1-3	7-9	13-15	19-21			
Sample ID	TP08	WS02	TP05	WS05	TP04	WS03	TP06	TP01	TP02	WS06			
Depth	0.20-0.50	0.00-0.50	0.50-0.70	0.50-1.00	0.80-1.00	0.00-1.20	0.40-0.60	0.70-0.90	0.30-0.50	0.00-1.20	Diagram		
COC No / misc												e attached no ations and ac	
Containers		VJB	VJB	VJB	VJB	VB	VJB	VJB	VJB	VJB			
Sample Date													
Sample Type													
		Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil			
Batch Number		1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method No.
Date of Receipt	11/04/2018 Medium Brown		11/04/2018 Medium Brown			11/04/2018 Medium Brown				12/04/2018 Medium Brown		None	
Sample Colour Other Items	chalk, carbon	Medium Brown carbon	vegetation, chalk	vegetation, carbon, stones	Medium Brown chalk	vegetation,stones	NDP NDP	NDP NDP	NDP NDP	stones, chalk, vegetation		None None	PM13/PM0 PM13/PM0
						-							

AECOM Client Name:

60569745 Reference: VP1 (TLOR) Location:

Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

Contact:	Alex Freeman

J E Job No.	18/5384	18/5384	18/5384	18/5455	18/5775	18/5775					
J E Sample No.	22-24	25-27	28-30	1-3	1-3	4-6					
o L dample No.	22-24	25-21	20-30	1-3	1-3	4-0					
Sample ID	BH03	WS07	WS08	BH02	BH04	BH05					
Depth	1.50-2.00	0.30-0.80	0.00-1.20	0.60-1.00	0.50-1.20	1.80-2.25			Please se	e attached n	otes for all
COC No / misc										ations and a	
Containers	VJB	VJB	VJB	VJB	VJB	VJB					
Sample Date	10/04/2018	11/04/2018	11/04/2018	11/04/2018	16/04/2018	17/04/2018					
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil					
Batch Number	1	1	1	1	1	1			LOD/LOR	Units	Method
Date of Receipt	12/04/2018	12/04/2018	12/04/2018	13/04/2018	18/04/2018	18/04/2018			LOD/LOR	OTILIS	No.
Arsenic #M	8.9	7.9	12.7	NDP	9.3	8.0			<0.5	mg/kg	TM30/PM15
Barium #M	133	120	116	NDP	127	129			<1	mg/kg	TM30/PM15
Beryllium	1.2	1.0	1.3	NDP	1.4	1.2			<0.5	mg/kg	TM30/PM15
Cadmium #M	0.2	0.6	0.2	NDP	0.2	0.1			<0.1	mg/kg	TM30/PM15
Chromium **M	59.8	67.0	112.0	NDP	62.1	34.6			<0.5	mg/kg	TM30/PM15
Copper *M	11	8	6	NDP	14	11			<1	mg/kg	TM30/PM15
Lead #M	13	21	19	NDP	12	12			<5	mg/kg	TM30/PM15
Mercury #M	<0.1	<0.1	<0.1	NDP	<0.1	<0.1			<0.1	mg/kg	TM30/PM15
Nickel *** Selenium ***	39.4	22.3	27.6	NDP NDP	30.2	29.6			<0.7	mg/kg	TM30/PM15 TM30/PM15
Total Sulphate as SO4 #M	<1	<1	1	NDP	<1	<1 439			<1 <50	mg/kg mg/kg	TM50/PM15
Vanadium	42	40	53	NDP	49	36			<1	mg/kg	TM30/PM15
Water Soluble Boron #M	0.8	1.2	1.1	NDP	1.0	1.0			<0.1	mg/kg	TM74/PM32
Zinc **M	61	93	79	NDP	55	59			<5	mg/kg	TM30/PM15
Arsenic	-	-	-	35.8	-	-			<0.5	mg/kg	TM30/PM62
Barium	-	-	-	350	-	-			<1	mg/kg	TM30/PM62
Beryllium	-	-	-	2.3	-	-			<0.5	mg/kg	TM30/PM62
Cadmium	-	-	-	1.7	-	-			<0.1	mg/kg	TM30/PM62
Chromium	-	-	-	82.2	-	-			<0.5	mg/kg	TM30/PM62
Copper	-	-	-	291	-	-			<1	mg/kg	TM30/PM62
Lead	-	-	-	126	-	-			<5	mg/kg	TM30/PM62
Mercury	-	-	-	<0.1	-	-			<0.1	mg/kg	TM30/PM62
Nickel	-	-	-	111.9	-	-			<0.7	mg/kg	TM30/PM62
Selenium	-	-	-	4	-	-			<1 <50	mg/kg	TM30/PM62 TM50/PM29
Total Sulphate as SO4 Vanadium	-	_	_	44355 _{AB}	-	_			<1	mg/kg mg/kg	TM30/PM62
Water Soluble Boron		_	_	4.2	_	_			<0.1	mg/kg	TM74/PM61
Zinc	-	-	-	937	-	-			<5	mg/kg	TM30/PM62
									-	5.9	
VOC TICs	-	-	-	See Attached	-	-				None	TM15/PM10
Methyl Tertiary Butyl Ether **M	-	-	-	<6	-	<6			<6	ug/kg	TM15/PM10
Benzene *M	-	-	-	28	-	<5			<5	ug/kg	TM15/PM10
Toluene #M	-	-	-	6	-	<3			<3	ug/kg	TM15/PM10
Ethylbenzene #M	-	-	-	24	-	<3			<3	ug/kg	TM15/PM10
p/m-Xylene #M	-	-	-	78	-	<4			<4	ug/kg	TM15/PM10
o-Xylene *M	-	-	-	23	-	<4			<4	ug/kg	TM15/PM10
Surrogate Recovery Toluene D8	-	-	-	51	-	111			<0	%	TM15/PM10
Surrogate Recovery 4-Bromofluorobenzene	-	-	-	51	-	103			<0	%	TM15/PM10
SVOC TICs		_	_	ND	_	_				None	TM16/PM8
0 V O C 1105	-	-	-	ND _{AB}	-	-				NOTE	TIVITO/PIVIO
				1							

Client Name: AECOM

Reference: 60569745 Location: VP1 (TLOR)

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

Report : Solid

Contact: Alex Freeman

									1		
J E Job No.	18/5384	18/5384	18/5384	18/5455	18/5775	18/5775					
J E Sample No.	22-24	25-27	28-30	1-3	1-3	4-6					
Sample ID	BH03	WS07	WS08	BH02	BH04	BH05					
Depth	1.50-2.00	0.30-0.80	0.00-1.20	0.60-1.00	0.50-1.20	1.80-2.25				e attached n	
COC No / misc									abbrevi	ations and a	cronyms
Containers	VJB	VJB	VJB	VJB	VJB	VJB					
Sample Date	10/04/2018	11/04/2018	11/04/2018	11/04/2018	16/04/2018	17/04/2018					
-											
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil					
Batch Number	1	1	1	1	1	1			LOD/LOR	Units	Method
Date of Receipt	12/04/2018	12/04/2018	12/04/2018	13/04/2018	18/04/2018	18/04/2018			LODILOIT	Office	No.
TPH CWG											
Aliphatics											
>C5-C6 #M	-	-	-	<0.1	-	<0.1			<0.1	mg/kg	TM36/PM12
>C6-C8 #M	-	-	-	<0.1	-	<0.1			<0.1	mg/kg	TM36/PM12
>C8-C10	-	-	-	<0.1	-	<0.1			<0.1	mg/kg	TM36/PM12
>C10-C12 *M	-	-	-	23.2	-	<0.2			<0.2	mg/kg	TM5/PM8/PM16
>C12-C16 #M	-	-	-	251	-	<4			<4	mg/kg	TM5/PM8/PM16
>C16-C21 #M	-	-	-	858	-	<7			<7	mg/kg	TM5/PM8/PM16
>C21-C35 #M	-	-	-	2127	-	<7			<7	mg/kg	TM5/PM8/PM16
Total aliphatics C5-35	-	-	-	3259	-	<19			<19	mg/kg	TM5/TM38/PM8/PM12/PM16
Aromatics											
>C5-EC7#	-	-	-	<0.1	-	<0.1			<0.1	mg/kg	TM36/PM12
>EC7-EC8#	-	-	-	<0.1	-	<0.1			<0.1	mg/kg	TM36/PM12
>EC8-EC10 #M	-	-	-	<0.1	-	<0.1			<0.1	mg/kg	TM36/PM12
>EC10-EC12#	-	-	-	<0.2	-	<0.2			<0.2	mg/kg	TM5/PM8/PM16
>EC12-EC16#	-	-	-	<4	-	<4			<4	mg/kg	TM5/PM8/PM16
>EC16-EC21 #	-	-	-	<7	-	<7			<7	mg/kg	TM5/PM8/PM16
>EC21-EC35#	-	-	-	40	-	<7			<7	mg/kg	TM5/PM8/PM16
Total aromatics C5-35#	-	-	-	40	-	<19			<19	mg/kg	TM5/TM38/PM8/PM12/PM16
Total aliphatics and aromatics(C5-35)	-	-	-	3299	-	<38			<38	mg/kg	TM5/TM38/PM8/PM12/PM16
Natural Moisture Content	17.1	17.6	24.9	NDP	16.0	16.5			<0.1	%	PM4/PM0
Ammoniacal Nitrogen as N	-	-	-	-	-	<0.6			<0.6	mg/kg	TM38/PM20
Ammoniacal Nitrogen as NH4	<0.6	<0.6	<0.6	12.8	-	-			<0.6	mg/kg	TM38/PM20
Chloride ***	-	-	-	NDP -	-	17			<2	mg/kg	TM38/PM20
Chloride (2:1 Ext BRE)	-	-	-		-	-			<0.002	g/l mg/kg	TM38/PM60 TM38/PM60
Chloride Fluoride	-	-	-	11 11.2	-	<0.3			<2 <0.3	mg/kg mg/kg	TM38/PM60 TM173/PM20
Hexavalent Chromium #	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3			<0.3	mg/kg	TM38/PM20
Nitrate as N	-	-	-	NDP	-	-			<2.5	mg/kg	TM38/PM20
Nitrate as NO3	-	-	-	-	-	<2.5			<2.5	mg/kg	TM38/PM20
Nitrate as NO3	-	-	-	-	-	-			<2.5	mg/kg	TM38/PM60
Nitrate as N	-	-	-	<2.5	-	-			<2.5	mg/kg	TM38/PM60
Sulphate as SO4 (2:1 Ext) #M	-	-	-	-	-	0.0965			<0.0015	g/l	TM38/PM20
Chromium III	59.8	67.0	112.0	NDP	62.1	34.6			<0.5	mg/kg	NONE/NONE
Chromium III	-	-	-	-	-	-			<0.5	mg/kg	NONE/NONE
										3 0	
Organic Matter	0.7	1.1	0.9	NDP	0.6	0.6			<0.2	%	TM21/PM24
Sulphide	-	-	-	<10	-	-			<10	mg/kg	TM107/PM119
рН ^{#М}	8.27	8.32	7.86	7.17	7.91	8.12			<0.01	pH units	TM73/PM11
Sample Type	Clay	Clay	Clay	NDP	Clay	Clay				None	PM13/PM0

Client Name: AECOM

Reference: 60569745 Location: VP1 (TLOR)

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

Report : Solid

Contact: Alex Freeman

	10/5001	10/5001	10/2001	10/5155	10/5555	10/5555			ì		
J E Job No.	18/5384	18/5384	18/5384	18/5455	18/5775	18/5775					
J E Sample No.	22-24	25-27	28-30	1-3	1-3	4-6					
Sample ID	BH03	WS07	WS08	BH02	BH04	BH05					
Depth	1.50-2.00	0.30-0.80	0.00-1.20	0.60-1.00	0.50-1.20	1.80-2.25			Please se	e attached n	otes for all
COC No / misc										ations and a	
Containers	VJB	VJB	VJB	VJB	VJB	VJB					
Sample Date	10/04/2018	11/04/2018	11/04/2018	11/04/2018	16/04/2018	17/04/2018					
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil					
Batch Number	1	1	1	1	1	1					Method
Date of Receipt	12/04/2018	12/04/2018	12/04/2018	13/04/2018	18/04/2018	18/04/2018			LOD/LOR	Units	No.
Sample Colour	Medium Brown	Medium Brown	Medium Brown	NDP	Medium Brown	Medium Brown				None	PM13/PM0
Other Items	chalk	sand, stones,	sand,vegetation, stones	NDP	chalk, stones	chalk				None	PM13/PM0

Client Name: AECOM Report : Liquid

Reference: 60569745
Location: VP1 (TLOR)
Contact: Alex Freeman

Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

H=H₂SO₄, Z=ZnAc, N=NaOH, HN=HNO₃

		ſ	1		1		11=112004, 2	L=Z11AC, 14=	NaOH, HN=	111403	3		
J E Job No.	18/7222	18/7222	18/7222	18/7222	18/7222	18/7222	18/7222	18/7222					
J E Sample No.	1-7	8-14	15-21	22-28	29-35	36-42	43-49	50-56					
Sample ID	BH01	BH02	BH03	WS03	WS04	WS05	WS06	DUP01					
Depth											Please se	e attached n	otes for all
COC No / misc												ations and a	
Containers	V H HN HCL P G	V H HN HCL P G	V H HN HCL P.G.	V H HN HCL P.G.	V H HN HCL P.G.	V H HN HCL P.G	V H HN HCL P.G.	V H HN HCL P.G.					
Sample Date	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018					
Sample Type	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water					
Batch Number	1	1	1	1	1	1	1	1			1.00/1.00	11.26	Method
Date of Receipt	12/05/2018	12/05/2018	12/05/2018	12/05/2018	12/05/2018	12/05/2018	12/05/2018	12/05/2018			LOD/LOR	Units	No.
Dissolved Arsenic#	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5			<2.5	ug/l	TM30/PM14
Dissolved Barium #	57	63	63	41	53	33	44	62			<3	ug/l	TM30/PM14
Dissolved Beryllium	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			<0.5	ug/l	TM30/PM14
Dissolved Boron	132	73	<12	49	54	178	34	<12			<12	ug/l	TM30/PM14
Dissolved Cadmium#	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			<0.5	ug/l	TM30/PM14
Total Dissolved Chromium#	6.2	6.8	<1.5	6.3	5.4	3.3	<1.5	6.7			<1.5	ug/l	TM30/PM14
Dissolved Copper#	<7	<7	<7	<7	<7	<7	<7	<7			<7	ug/l	TM30/PM14
Dissolved Lead #	<5	<5	<5	<5	<5	<5	<5	<5			<5	ug/l	TM30/PM14
Dissolved Mercury#	<1	<1	<1	<1	<1	<1	<1	<1			<1	ug/l	TM30/PM14
Dissolved Nickel #	2	<2	5	4	3	8	4	5			<2	ug/l	TM30/PM14
Dissolved Selenium #	<3	5	16	<3	<3	<3	<3	<3			<3	ug/l	TM30/PM14
Dissolved Vanadium#	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5			<1.5	ug/l	TM30/PM14
Dissolved Zinc#	12	6	7	<3	<3	10	6	6			<3	ug/l	TM30/PM14
VOC TICs	-	-	-	ND	ND	ND	ND	-				None	TM15/PM10
Methyl Tertiary Butyl Ether #	-	-	-	<0.1	2.8	<0.2 _{AA}	<0.1	-			<0.1	ug/l	TM15/PM10
Benzene#	-	-	-	<0.5	<0.5	<0.5	<0.5	-			<0.5	ug/l	TM15/PM10
Toluene #	-	-	-	<5	<5	<5	<5	-			<5	ug/l	TM15/PM10
Ethylbenzene #	-	-	-	<1	<1	<1	<1	-			<1	ug/l	TM15/PM10
p/m-Xylene #	-	-	-	<2	<2	<2	<2	-			<2	ug/l	TM15/PM10
o-Xylene #	-	-	-	<1	<1	<1	<1	-			<1	ug/l	TM15/PM10
Surrogate Recovery Toluene D8	-	-	-	95	96	98	96	-			<0	%	TM15/PM10
Surrogate Recovery 4-Bromofluorobenzene	-	-	-	96	96	100	101	-			<0	%	TM15/PM10
TPH CWG													
Aliphatics													
>C5-C6 #	<10	<10	<10	<10	<10	<10	<10	<10			<10	ug/l	TM36/PM12
>C6-C8#	<10	<10	<10	<10	<10	<10	<10	<10			<10	ug/l	TM36/PM12
>C8-C10 #	<10	<10	<10	<10	<10	<10	<10	<10			<10	ug/l	TM36/PM12
>C10-C12#	<5	<5	<5	<5	<5	<5	<5	<5			<5	ug/l	TM5/PM16/PM30
>C12-C16#	<10	<10	<10	<10	<10	<10	<10	<10			<10	ug/l	TM5/PM16/PM30
>C16-C21 #	<10	<10	<10	<10	<10	<10	<10	<10			<10	ug/l	TM5/PM16/PM30
>C21-C35#	<10	<10	<10	<10	<10	<10	<10	<10			<10	ug/l	TM5/PM16/PM30
Total aliphatics C5-35 #	<10	<10	<10	<10	<10	<10	<10	<10			<10	ug/l	TM5/TM36/PM12/PM16/PM30

Client Name: AECOM Report : Liquid

Reference: 60569745
Location: VP1 (TLOR)
Contact: Alex Freeman

Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

H=H₂SO₄, Z=ZnAc, N=NaOH, HN=HNO₃

							11=112004, 2		NaOH, HN=HN0 ₃	_		
J E Job No.	18/7222	18/7222	18/7222	18/7222	18/7222	18/7222	18/7222	18/7222				
J E Sample No.	1-7	8-14	15-21	22-28	29-35	36-42	43-49	50-56				
Sample ID	BH01	BH02	BH03	WS03	WS04	WS05	WS06	DUP01				
Depth											e attached n	
COC No / misc										abbrevi	ations and a	cronyms
Containers VE	H HN HCL P G	V H HN HCL P G	V H HN HCL P G	V H HN HCL P G	V H HN HCL P G	V H HN HCL P G	V H HN HCL P G	V H HN HCL P G				
Sample Date 10	0/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018				
				Ground Water								
Batch Number	1	1	1	1	1	1	1	1		LOD/LOR	Units	Method No.
Date of Receipt 12	2/05/2018	12/05/2018	12/05/2018	12/05/2018	12/05/2018	12/05/2018	12/05/2018	12/05/2018				140.
TPH CWG												
Aromatics												
>C5-EC7#	<10	<10	<10	<10	<10	<10	<10	<10		<10	ug/l	TM36/PM12
>EC7-EC8#	<10	<10	<10	<10	<10	<10	<10	<10		<10	ug/l	TM36/PM12
>EC8-EC10#	<10	<10	<10	<10	<10	<10	<10	<10		<10	ug/l	TM36/PM12
>EC10-EC12#	<5	<5	<5 -10	<5	<5	<5	<5	<5		<5	ug/l	TM5/PM16/PM30
>EC12-EC16#	<10	<10	<10	<10	<10	<10	<10	<10		<10	ug/l	TM5/PM16/PM30
>EC16-EC21 #	<10	<10	<10	<10	<10	<10	<10	<10		<10	ug/l	TM5/PM16/PM30
>EC21-EC35#	<10	<10	<10	<10	<10	<10	<10	<10		<10	ug/l	TM5/PM16/PM30
Total aromatics C5-35 #	<10	<10	<10	<10	<10	<10	<10	<10		<10	ug/l	TM5/TM36/PW12/PM16/PM30
Total aliphatics and aromatics(C5-35) #	<10	<10	<10	<10	<10	<10	<10	<10		<10	ug/l	THE THEORY MILET BLUE BLOC
MTBE#	<5	<5	<5	_	-	-	-	<5		<5	ug/l	TM31/PM12
Benzene #	<5	<5	<5	_	_	_	_	<5		<5	ug/l	TM31/PM12
Toluene #	<5	<5	<5	-	-	-	-	<5		<5	ug/l	TM31/PM12
Ethylbenzene #	<5	<5	<5	-	-	-	-	<5		<5	ug/l	TM31/PM12
m/p-Xylene #	<5	<5	<5	-	-	-	-	<5		<5	ug/l	TM31/PM12
o-Xylene #	<5	<5	<5	-	-	-	-	<5		<5	ug/l	TM31/PM12
Sulphate as SO4 #	62.9	42.8	94.2	417.5	720.3	983.9	299.8	76.4		<0.5	mg/l	TM38/PM0
Chloride #	24.3	18.2	26.8	563.4	1280.0	304.2	69.2	26.2		<0.3	mg/l	TM38/PM0
Nitrate as N#	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		<0.05	mg/l	TM38/PM0
Ortho Phosphate as P#	0.19	0.15	<0.03	0.12	<0.03	<0.03	<0.03	<0.03		<0.03	mg/l	TM38/PM0
Ammoniacal Nitrogen as N#	0.42	0.27	0.06	0.06	0.09	0.87	0.05	0.06		<0.03	mg/l	TM38/PM0
Hexavalent Chromium	<6	<6	<6	<6	<6	<6	<6	<6		<6	ug/l	TM38/PM0
Total Dissolved Chromium III	6	7	<6	6	<6	<6	<6	7		<6	ug/l	TM0/PM0
Total Alkalinity on C-CCC#	352	300	276	346	378	612	762	274		<1	mg/l	TM75/PM0
Total Alkalinity as CaCO3 #	JJ2	300	210	340	3/0	012	102	214		<1	mg/i	TIVIT STEIVIU
Dissolved Organic Carbon #	<2	<2	<2	6	9	38	3	<2		<2	mg/l	TM60/PM0
Dissolved Iron II	<0.02	<0.02	0.02	0.10	0.26	1.63	0.15	<0.02		<0.02	mg/l	TM48/PM0
pH#	7.63	7.40	7.31	6.95	6.83	6.97	7.19	7.28		<0.01	pH units	TM73/PM0
Total Suspended Solids #	35	<10	19	10	14	21	1787	15		<10	mg/l	TM37/PM0
·												
											I	

Client Name: AECOM

Reference: 60569745 Location: VP1 (TLOR) Report : Misc

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

Contact: Alex Freeman

J E Job No.	18/5166	18/5333	18/5384	18/5455				1			
J E Sample No.	1-3	1-3	1-3	1-3							
J E Sample No.	1-3	1-3	1-3	1-3							
Sample ID	BH06	TT01	TP06	BH02							
Depth	0.40-0.70	1.70-1.90	0.40-0.60	0.60-1.00				Please se	e attached n	otes for all	
COC No / misc									abbreviations and acronyms		
Containers	VJB	VJB	VJB	VJB							
Sample Date	05/04/2018	09/04/2018	10/04/2018	11/04/2018							
Sample Type	Soil	Soil	Soil	Soil							
Batch Number	1	1	1	1				LOD/LOR	Llaita	Method	
Date of Receipt	07/04/2018	11/04/2018	12/04/2018	13/04/2018				LOD/LOR	Units	No.	
Sample Temperature	5.5	8.8	6.7	3.0				<0.1	Degrees C	NONE/NONE	

Client Name: AECOM SVOC Report : Solid

Reference: 60569745
Location: VP1 (TLOR)
Contact: Alex Freeman

J E Job No.	10/5166	18/5166	10/5222	18/5333	18/5333	10/5204	18/5384	18/5384	10/5155	18/5775			
J E Job No. J E Sample No.	18/5166 4-6	13-15	18/5333 16-18	22-24	28-29	18/5384 1-3	7-9	13-15	18/5455 1-3	4-6			
o E dampie ito.	4.0	10 10	10 10	22 24	20 20	10	7.5	10 10	10	40			
Sample ID	BH01	WS01	WS02	WS05	WS03	TP06	TP01	TP02	BH02	BH05			
Depth	0.45-0.70	1.00-1.25	0.00-0.50	0.50-1.00	0.00-1.20	0.40-0.60	0.70-0.90	0.30-0.50	0.60-1.00	1.80-2.25	Plagea ea	e attached n	otes for all
COC No / misc	0.10 0.10	1.00 1.20	0.00 0.00	0.00 1.00	0.00 1.20	0.10 0.00	0.7 0 0.00	0.00 0.00	0.00 1.00	1100 2120		ations and a	
Containers	VJB	VJB	VJB	VJB	V B	VJB	VJB	VJB	VJB	VJB			
Sample Date	05/04/2018	06/04/2018	10/04/2018	10/04/2018	10/04/2018	10/04/2018	11/04/2018	11/04/2018	11/04/2018	17/04/2018			
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil			
Batch Number	1	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method
Date of Receipt	07/04/2018	07/04/2018	11/04/2018	11/04/2018	11/04/2018	12/04/2018	12/04/2018	12/04/2018	13/04/2018	18/04/2018	LOD/LOR	OTINO	No.
SVOC MS													
Phenols													
2-Chlorophenol **M	<100 _{AB}	<100 _{AB}	<10	<10	<10	<10	<10	<10	<100 _{AB}	<10	<10	ug/kg	TM16/PM8
2-Methylphenol	<100 _{AB}	<100 _{AB}	<10	<10 <10	<10	<10 <10	<10	<10	<100 _{AB}	<10	<10 <10	ug/kg	TM16/PM8 TM16/PM8
2-Nitrophenol 2,4-Dichlorophenol #M	<100 _{AB}	<100 _{AB}	<10 <10	<10	<10 <10	<10	<10 <10	<10 <10	<100 _{AB}	<10 <10	<10	ug/kg ug/kg	TM16/PM8
2,4-Dimethylphenol	<100 _{AB}	<100AB	<10	<10	<10	<10	<10	<10	<100 _{AB}	<10	<10	ug/kg	TM16/PM8
2,4,5-Trichlorophenol	<100 _{AB}	<100 _{AB}	<10	<10	<10	<10	<10	<10	<100 _{AB}	<10	<10	ug/kg	TM16/PM8
2,4,6-Trichlorophenol	<100 _{AB}	<100 _{AB}	<10	<10	<10	<10	<10	<10	<100 _{AB}	<10	<10	ug/kg	TM16/PM8
4-Chloro-3-methylphenol	<100 _{AB}	<100 _{AB}	<10	<10	<10	<10	<10	<10	<100 _{AB}	<10	<10	ug/kg	TM16/PM8
4-Methylphenol	<100 _{AB}	<100 _{AB}	<10	<10	<10	<10	<10	<10	<100 _{AB}	<10	<10	ug/kg	TM16/PM8
4-Nitrophenol	<100 _{AB}	<100 _{AB}	<10	<10	<10	<10	<10	<10	<100 _{AB}	<10	<10	ug/kg	TM16/PM8
Pentachlorophenol	<100 _{AB}	<100 _{AB}	<10	<10	<10	<10	<10	<10	<100 _{AB}	<10	<10	ug/kg	TM16/PM8
Phenol #M	<100 _{AB}	<100 _{AB}	<10	<10	<10	<10	<10	<10	<100 _{AB}	<10	<10	ug/kg	TM16/PM8
PAHs													<u> </u>
2-Chloronaphthalene #M	<100 _{AB}	<100 _{AB}	<10	<10	<10	<10	<10	<10	<100 _{AB}	<10	<10	ug/kg	TM16/PM8
2-Methylnaphthalene ^{#M} Naphthalene	1998 _{AB}	<100 _{AB}	127	44 <10	53	<10	2857	4537	1136 _{AB}	<10	<10	ug/kg	TM16/PM8
Acenaphthylene	<100 _{AB}	<100 _{AB}	<10 <10	<10	<10 <10	<10 <10	601 <10	1360 <10	<100 _{AB}	<10 <10	<10 <10	ug/kg	TM16/PM8 TM16/PM8
Acenaphthene	<100 _{AB}	<100 _{AB}	<10	<10	<10	<10	<10	1651	<100 _{AB}	<10	<10	ug/kg ug/kg	TM16/PM8
Fluorene	<100 _{AB}	<100AB	<10	<10	<10	<10	<10	2305	<100 _{AB}	<10	<10	ug/kg	TM16/PM8
Phenanthrene **M	<100 _{AB}	<100 _{AB}	<10	124	130	110	1872	7600	<100 _{AB}	<10	<10	ug/kg	TM16/PM8
Anthracene	<100 _{AB}	<100 _{AB}	<10	41	46	50	603	1072	<100 _{AB}	<10	<10	ug/kg	TM16/PM8
Fluoranthene #M	<100 _{AB}	<100 _{AB}	<10	29	26	23	<10	1569	<100 _{AB}	<10	<10	ug/kg	TM16/PM8
Pyrene #M	<100 _{AB}	<100 _{AB}	<10	171	110	91	2469	4180	2817 _{AB}	<10	<10	ug/kg	TM16/PM8
Benzo(a)anthracene	<100 _{AB}	<100 _{AB}	<10	56	89	72	662	1520	<100 _{AB}	<10	<10	ug/kg	TM16/PM8
Chrysene	<100 _{AB}	<100 _{AB}	<10	288	318	258	2415	3179	<100 _{AB}	<10	<10	ug/kg	TM16/PM8
Benzo(bk)fluoranthene	<100 _{AB}	<100 _{AB}	<10	159	180	158	796	1190	<100 _{AB}	<10	<10	ug/kg	TM16/PM8
Benzo(a)pyrene	<100 _{AB}	<100 _{AB}	<10	105	89	96	938	1089	<100 _{AB}	<10	<10	ug/kg	TM16/PM8
Indeno(123cd)pyrene	<100 _{AB}	<100 _{AB}	<10	47	37	40 50	237	263	<100 _{AB}	<10	<10	ug/kg	TM16/PM8 TM16/PM8
Dibenzo(ah)anthracene Benzo(ghi)perylene	<100 _{AB}	<100 _{AB}	<10 <10	38 104	40 114	105	255 581	346 591	<100 _{AB}	<10 <10	<10 <10	ug/kg ug/kg	TM16/PM8
Benzo(b)fluoranthene	<100 _{AB}	<100AB	<10	114	130	114	573	857	<100 _{AB}	<10	<10	ug/kg	TM16/PM8
Benzo(k)fluoranthene	<100 _{AB}	<100 _{AB}	<10	45	50	44	223	333	<100 _{AB}	<10	<10	ug/kg	TM16/PM8
Phthalates	AB	- Ab							AB			-3-3	
Bis(2-ethylhexyl) phthalate	<1000 _{AB}	<1000 _{AB}	<100	<100	<100	<100	1926	3119	<1000 _{AB}	<100	<100	ug/kg	TM16/PM8
Butylbenzyl phthalate	<1000 _{AB}	<1000 _{AB}	<100	<100	<100	<100	<100	<100	<1000 _{AB}	<100	<100	ug/kg	TM16/PM8
Di-n-butyl phthalate	<1000 _{AB}	<1000 _{AB}	<100	<100	<100	<100	<100	<100	<1000 _{AB}	<100	<100	ug/kg	TM16/PM8
Di-n-Octyl phthalate	<1000 _{AB}	<1000 _{AB}	<100	<100	<100	<100	<100	<100	<1000 _{AB}	<100	<100	ug/kg	TM16/PM8
Diethyl phthalate	<1000 _{AB}	<1000 _{AB}	<100	<100	<100	<100	<100	<100	<1000 _{AB}	<100	<100	ug/kg	TM16/PM8
Dimethyl phthalate #M	<1000 _{AB}	<1000 _{AB}	<100	<100	<100	<100	<100	<100	<1000 _{AB}	<100	<100	ug/kg	TM16/PM8
													-
													-
													ł
													İ
						l							

Client Name: AECOM SVOC Report :

Reference: 60569745
Location: VP1 (TLOR)
Contact: Alex Freeman

											•		
J E Job No.	18/5166	18/5166	18/5333	18/5333	18/5333	18/5384	18/5384	18/5384	18/5455	18/5775			
J E Sample No.	4-6	13-15	16-18	22-24	28-29	1-3	7-9	13-15	1-3	4-6			
Sample ID	BH01	WS01	WS02	WS05	WS03	TP06	TP01	TP02	BH02	BH05			
Depth	0.45-0.70	1.00-1.25	0.00-0.50	0.50-1.00	0.00-1.20	0.40-0.60	0.70-0.90	0.30-0.50	0.60-1.00	1.80-2.25		e attached n	
COC No / misc											abbrevi	ations and a	cronyms
Containers	VJB	VJB	VJB	VJB	V B	VJB	VJB	VJB	VJB	VJB			
Sample Date		06/04/2018		10/04/2018				11/04/2018		1			
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil			
Batch Number	1	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method No.
Date of Receipt SVOC MS	07/04/2018	07/04/2018	11/04/2018	11/04/2018	11/04/2018	12/04/2018	12/04/2018	12/04/2018	13/04/2018	18/04/2018			140.
Other SVOCs													
1,2-Dichlorobenzene	<100 _{AB}	<100 _{AB}	<10	<10	<10	<10	<10	<10	<100 _{AB}	<10	<10	ug/kg	TM16/PM8
1,2,4-Trichlorobenzene **M	<100AB	<100AB	<10	<10	<10	<10	<10	<10	<100AB	<10	<10	ug/kg	TM16/PM8
1,3-Dichlorobenzene	<100AB	<100AB	<10	<10	<10	<10	<10	<10	<100 _{AB}	<10	<10	ug/kg	TM16/PM8
1,4-Dichlorobenzene	<100 _{AB}	<100 _{AB}	<10	<10	<10	<10	<10	<10	<100 _{AB}	<10	<10	ug/kg	TM16/PM8
2-Nitroaniline	<100 _{AB}	<100 _{AB}	<10	<10	<10	<10	<10	<10	<100 _{AB}	<10	<10	ug/kg	TM16/PM8
2,4-Dinitrotoluene	<100 _{AB}	<100 _{AB}	<10	<10	<10	<10	<10	<10	<100 _{AB}	<10	<10	ug/kg	TM16/PM8
2,6-Dinitrotoluene	<100 _{AB}	<100 _{AB}	<10	<10	<10	<10	<10	<10	<100 _{AB}	<10	<10	ug/kg	TM16/PM8
3-Nitroaniline	<100 _{AB}	<100 _{AB}	<10	<10	<10	<10	<10	<10	<100 _{AB}	<10	<10	ug/kg	TM16/PM8
4-Bromophenylphenylether ***	<100 _{AB}	<100 _{AB}	<10	<10	<10	<10	<10	<10	<100 _{AB}	<10	<10	ug/kg	TM16/PM8
4-Chloroaniline	<100 _{AB}	<100 _{AB}	<10	<10	<10	<10	<10	<10	<100 _{AB}	<10	<10	ug/kg	TM16/PM8
4-Chlorophenylphenylether	<100 _{AB}	<100 _{AB}	<10	<10	<10	<10	<10	<10	<100 _{AB}	<10	<10	ug/kg	TM16/PM8
4-Nitroaniline	<100 _{AB}	<100 _{AB}	<10	<10	<10	<10	<10	<10	<100 _{AB}	<10	<10	ug/kg	TM16/PM8
Azobenzene	<100 _{AB}	<100 _{AB}	<10	<10	<10	<10	<10	<10	<100 _{AB}	<10	<10	ug/kg	TM16/PM8
Bis(2-chloroethoxy)methane	<100 _{AB}	<100 _{AB}	<10	<10	<10	<10	<10	<10	<100 _{AB}	<10	<10	ug/kg	TM16/PM8
Bis(2-chloroethyl)ether	<100 _{AB}	<100 _{AB}	<10	<10	<10	<10	<10	<10	<100 _{AB}	<10	<10	ug/kg	TM16/PM8
Carbazole	<100 _{AB}	<100 _{AB}	<10	<10 <10	<10	<10	<10	<10	<100 _{AB}	<10	<10	ug/kg	TM16/PM8 TM16/PM8
Dibenzofuran *** Hexachlorobenzene	<100 _{AB}	<100 _{AB}	<10 <10	<10	<10 <10	<10 <10	<10 <10	818 <10	<100 _{AB}	<10 <10	<10 <10	ug/kg ug/kg	TM16/PM8
Hexachlorobutadiene #M	<100 _{AB}	<100 _{AB}	<10	<10	<10	<10	<10	<10	<100AB	<10	<10	ug/kg ug/kg	TM16/PM8
Hexachlorocyclopentadiene	<100AB	<100AB	<10	<10	<10	<10	<10	<10	<100AB	<10	<10	ug/kg	TM16/PM8
Hexachloroethane	<100 _{AB}	<100 _{AB}	<10	<10	<10	<10	<10	<10	<100 _{AB}	<10	<10	ug/kg	TM16/PM8
Isophorone #M	<100 _{AB}	<100 _{AB}	<10	<10	<10	<10	<10	<10	<100 _{AB}	<10	<10	ug/kg	TM16/PM8
N-nitrosodi-n-propylamine #M	<100 _{AB}	<100 _{AB}	<10	<10	<10	<10	<10	<10	<100 _{AB}	<10	<10	ug/kg	TM16/PM8
Nitrobenzene #M	<100 _{AB}	<100 _{AB}	<10	<10	<10	<10	<10	<10	<100 _{AB}	<10	<10	ug/kg	TM16/PM8
Surrogate Recovery 2-Fluorobiphenyl	112 _{AB}	108 _{AB}	114	120	123	108	112	121	114 _{AB}	119	<0	%	TM16/PM8
Surrogate Recovery p-Terphenyl-d14	113 _{AB}	113 _{AB}	104	120	122	116	114	115	130 _{AB}	127	<0	%	TM16/PM8
													<u> </u>
													-

Solid

Client Name: AECOM

Reference: 60569745
Location: VP1 (TLOR)
Contact: Alex Freeman

SVOC Report : Liquid

J E Job No.	10/7000	10/7000	10/7000	10/7000		l				
J E JOB No. J E Sample No.	18/7222 22-28	18/7222 29-35	18/7222 36-42	18/7222 43-49						
J E Sample No.	22-20	25-33	30-42	43-43						
Sample ID	WS03	WS04	WS05	WS06						
Odinpie ib	***************************************	*******	***************************************	W000						
Depth								Plaaca co	e attached r	otos for all
COC No / misc									e allached rations and a	
Containers	V H HN HCL P G	V H HN HCL P G	V H HN HCL P G	V H HN HCL P G						•
Sample Date	10/05/2018	10/05/2018	10/05/2018	10/05/2018						
Sample Type	Ground Water	Ground Water	Ground Water	Ground Water						
Batch Number	1	1	1	1				LOD/LOR	Units	Method
Date of Receipt	12/05/2018	12/05/2018	12/05/2018	12/05/2018				LOD/LOR	Office	No.
SVOC MS										
Phenois										
2-Chlorophenol#	<1	<1	<1	<1				<1	ug/l	TM16/PM30
2-Methylphenol # 2-Nitrophenol	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5				<0.5 <0.5	ug/l ug/l	TM16/PM30 TM16/PM30
2,4-Dichlorophenol #	<0.5	<0.5	<0.5	<0.5				<0.5	ug/l	TM16/PM30
2,4-Dimethylphenol	<1	<1	<1	<1				<1	ug/l	TM16/PM30
2,4,5-Trichlorophenol #	<0.5	<0.5	<0.5	<0.5				<0.5	ug/l	TM16/PM30
2,4,6-Trichlorophenol	<1	<1	<1	<1				<1	ug/l	TM16/PM30
4-Chloro-3-methylphenol#	<0.5	<0.5	<0.5	<0.5				<0.5	ug/l	TM16/PM30
4-Methylphenol	<1	<1	<1	<1				<1	ug/l	TM16/PM30
4-Nitrophenol	<10	<10	<10	<10				<10	ug/l	TM16/PM30
Pentachlorophenol	<1	<1	<1	<1				<1	ug/l	TM16/PM30
Phenol PAHs	<1	<1	<1	<1				<1	ug/l	TM16/PM30
	-1	-1	-1	-1				-1	ug/l	TM16/PM30
2-Chloronaphthalene # 2-Methylnaphthalene #	<1 <1	<1 <1	<1 <1	<1 <1				<1 <1	ug/l ug/l	TM16/PM30
Naphthalene #	<1	<1	<1	<1				<1	ug/l	TM16/PM30
Acenaphthylene #	<0.5	<0.5	<0.5	<0.5				<0.5	ug/l	TM16/PM30
Acenaphthene #	<1	<1	<1	<1				<1	ug/l	TM16/PM30
Fluorene #	<0.5	<0.5	<0.5	<0.5				<0.5	ug/l	TM16/PM30
Phenanthrene#	<0.5	<0.5	<0.5	<0.5				<0.5	ug/l	TM16/PM30
Anthracene #	<0.5	<0.5	<0.5	<0.5				<0.5	ug/l	TM16/PM30
Fluoranthene #	<0.5	<0.5	<0.5	<0.5				<0.5	ug/l	TM16/PM30
Pyrene #	<0.5	<0.5	<0.5	<0.5				<0.5	ug/l	TM16/PM30
Benzo(a)anthracene #	<0.5	<0.5	<0.5 <0.5	<0.5				<0.5	ug/l	TM16/PM30 TM16/PM30
Chrysene # Benzo(bk)fluoranthene #	<0.5 <1	<0.5 <1	<0.5	<0.5 <1				<0.5 <1	ug/l ug/l	TM16/PM30
Benzo(a)pyrene	<1	<1	<1	<1				<1	ug/l	TM16/PM30
Indeno(123cd)pyrene	<1	<1	<1	<1				<1	ug/l	TM16/PM30
Dibenzo(ah)anthracene #	<0.5	<0.5	<0.5	<0.5				<0.5	ug/l	TM16/PM30
Benzo(ghi)perylene #	<0.5	<0.5	<0.5	<0.5				<0.5	ug/l	TM16/PM30
Phthalates										
Bis(2-ethylhexyl) phthalate	<5	<5	<5	<5				<5	ug/l	TM16/PM30
Butylbenzyl phthalate	<1	<1	<1	<1				<1	ug/l	TM16/PM30
Di-n-butyl phthalate # Di-n-Octyl phthalate	<1.5 <1	<1.5 <1	<1.5 <1	<1.5 <1				<1.5 <1	ug/l	TM16/PM30 TM16/PM30
Diethyl phthalate #	<1	<1	<1	<1				<1	ug/l ug/l	TM16/PM30
Dimethyl phthalate	<1	<1	<1	<1				<1	ug/l	TM16/PM30
,,										

Client Name: AECOM

Reference: 60569745
Location: VP1 (TLOR)
Contact: Alex Freeman

SVOC Report : Liquid

								Ī		
J E Job No.	18/7222	18/7222	18/7222	18/7222						
J E Sample No.	22-28	29-35	36-42	43-49						
Sample ID	WS03	WS04	WS05	WS06						
Depth									e attached n	
COC No / misc								abbrevi	ations and a	cronyms
Containers				V H HN HCL P G						
Sample Date		10/05/2018								
Sample Type		Ground Water		Ground Water						
Batch Number	1	1	1	1				LOD/LOR	Units	Method
Date of Receipt	12/05/2018	12/05/2018	12/05/2018	12/05/2018						No.
SVOC MS										
Other SVOCs	_	_	4	_				_		TM16/PM30
1,2-Dichlorobenzene #	<1 <1	<1 <1	<1 <1	<1 <1				<1 <1	ug/l ug/l	TM16/PM30
1,2,4-Trichlorobenzene # 1,3-Dichlorobenzene #	<1	<1	<1	<1				<1	ug/l	TM16/PM30
1,4-Dichlorobenzene #	<1	<1	<1	<1				<1	ug/l	TM16/PM30
2-Nitroaniline	<1	<1	<1	<1				<1	ug/l	TM16/PM30
2,4-Dinitrotoluene #	<0.5	<0.5	<0.5	<0.5				<0.5	ug/l	TM16/PM30
2,6-Dinitrotoluene	<1	<1	<1	<1				<1	ug/l	TM16/PM30
3-Nitroaniline	<1	<1	<1	<1				<1	ug/l	TM16/PM30
4-Bromophenylphenylether #	<1	<1	<1	<1				<1	ug/l	TM16/PM30
4-Chloroaniline	<1	<1	<1	<1				<1	ug/l	TM16/PM30
4-Chlorophenylphenylether #	<1	<1	<1	<1				<1	ug/l	TM16/PM30
4-Nitroaniline	<0.5	<0.5	<0.5	<0.5				<0.5	ug/l	TM16/PM30
Azobenzene #	<0.5	<0.5	<0.5	<0.5				<0.5	ug/l	TM16/PM30
Bis(2-chloroethoxy)methane#	<0.5	<0.5	<0.5	<0.5				<0.5	ug/l	TM16/PM30
Bis(2-chloroethyl)ether#	<1	<1	<1	<1				<1	ug/l	TM16/PM30
Carbazole #	<0.5	<0.5	<0.5	<0.5				<0.5	ug/l	TM16/PM30
Dibenzofuran #	<0.5	<0.5	<0.5	<0.5				<0.5	ug/l	TM16/PM30
Hexachlorobenzene #	<1	<1	<1	<1				<1	ug/l	TM16/PM30
Hexachlorobutadiene #	<1	<1	<1	<1				<1	ug/l	TM16/PM30
Hexachlorocyclopentadiene	<1	<1	<1	<1				<1	ug/l	TM16/PM30
Hexachloroethane #	<1	<1	<1	<1				<1	ug/l	TM16/PM30
Isophorone #	<0.5	<0.5	<0.5	<0.5				<0.5	ug/l	TM16/PM30
N-nitrosodi-n-propylamine #	<0.5	<0.5	<0.5	<0.5				<0.5	ug/l	TM16/PM30
Nitrobenzene #	<1	<1	<1	<1				<1	ug/l	TM16/PM30
Surrogate Recovery 2-Fluorobiphenyl	122	118	113 129	115				<0	%	TM16/PM30 TM16/PM30
Surrogate Recovery p-Terphenyl-d14	130	125	129	129				<0	%	TIVITO/PIVISU
										-
										<u> </u>
										-
										}
										}
										-
										}
		l								ĺ
										ĺ

Client Name: AECOM VOC Report : Solid

Reference: 60569745
Location: VP1 (TLOR)
Contact: Alex Freeman

J E Job No.	18/5166	18/5166	18/5333	18/5333	18/5333	18/5384	18/5384	18/5384	18/5455	18/5775	1		
J E Sample No.	4-6	13-15	16-18	22-24	28-29	1-3	7-9	13-15	1-3	4-6			
Sample ID	BH01	WS01	WS02	WS05	WS03	TP06	TP01	TP02	BH02	BH05			
Depth	0.45-0.70	1.00-1.25	0.00-0.50	0.50-1.00	0.00-1.20	0.40-0.60	0.70-0.90	0.30-0.50	0.60-1.00	1.80-2.25	Please se	e attached n	otes for all
COC No / misc											abbrevia	ations and a	cronyms
Containers	VJB	VJB	VJB	VJB	V B	VJB	VJB	VJB	VJB	VJB			
Sample Date	05/04/2018		10/04/2018		10/04/2018				11/04/2018	17/04/2018			
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	<u> </u>		
Batch Number	1	1 07/04/2018	1	1	1 11/04/2018	1	1	1	1 13/04/2018	1	LOD/LOR	Units	Method No.
VOC MS	07/04/2018	07/04/2018	11/04/2018	11/04/2018	11/04/2018	12/04/2018	12/04/2018	12/04/2018	13/04/2018	18/04/2018			140.
Dichlorodifluoromethane	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	ug/kg	TM15/PM10
Methyl Tertiary Butyl Ether **	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	ug/kg	TM15/PM10
Chloromethane #	<3	<3	<3	<3	<3	<3	<3	<3	5	<3	<3	ug/kg	TM15/PM10
Vinyl Chloride	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	ug/kg	TM15_A/PM10
Bromomethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	ug/kg	TM15/PM10
Chloroethane #M	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	ug/kg	TM15/PM10
Trichlorofluoromethane #M	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg	TM15/PM10
1,1-Dichloroethene (1,1 DCE) #M	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	ug/kg	TM15/PM10
Dichloromethane (DCM) #	<30	<30	<30	<30	<30	<30	78	41	<30	<30	<30	ug/kg	TM15/PM10
trans-1-2-Dichloroethene # 1,1-Dichloroethane #M	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg	TM15/PM10 TM15/PM10
1,1-Dichloroethane "" cis-1-2-Dichloroethene #M	<6 <7	<6 <7	<6 <7	<6 <7	<6 <7	<6 <7	<6 <7	<6 <7	<6 <7	<6 <7	<6 <7	ug/kg ug/kg	TM15/PM10 TM15/PM10
2,2-Dichloropropane	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	ug/kg ug/kg	TM15/PM10
Bromochloromethane #M	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	ug/kg	TM15/PM10
Chloroform #M	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM15/PM10
1,1,1-Trichloroethane #M	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM15/PM10
1,1-Dichloropropene #	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg	TM15/PM10
Carbon tetrachloride #M	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	ug/kg	TM15/PM10
1,2-Dichloroethane #M	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM15/PM10
Benzene #M	46	47	<5	<5	<5	<5	45	60	28	<5	<5	ug/kg	TM15/PM10
Trichloroethene (TCE) #M	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM15/PM10
1,2-Dichloropropane #M	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	ug/kg	TM15/PM10
Dibromomethane #M Bromodichloromethane #M	<4 <4	<4 <4	<4 <4	<4 <4	<4 <4	<4 <4	<4 <4	<4 <4	<4 <4	<4 <4	<4 <4	ug/kg ug/kg	TM15/PM10 TM15/PM10
cis-1-3-Dichloropropene	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	ug/kg ug/kg	TM15/PM10
Toluene *M	7	15	<3	<3	<3	<3	5	19	6	<3	<3	ug/kg	TM15/PM10
trans-1-3-Dichloropropene	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg	TM15/PM10
1,1,2-Trichloroethane #M	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	ug/kg	TM15/PM10
Tetrachloroethene (PCE)#	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg	TM15/PM10
1,3-Dichloropropane **M	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	ug/kg	TM15/PM10
Dibromochloromethane #M	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM15/PM10
1,2-Dibromoethane #	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg	TM15/PM10
Chlorobenzene #M	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	ug/kg	TM15/PM10
1,1,1,2-Tetrachloroethane **M Ethylbenzene **M	<5 60	<5 31	<5 <3	<5	<5	<5	<5 39	<5 121	<5	<5	<5	ug/kg	TM15/PM10 TM15/PM10
p/m-Xylene **M	60 114	89	<3 <4	<3 <4	<3 9	<3 <4	213	121 115	24 78	<3 <4	<3 <4	ug/kg ug/kg	TM15/PM10
o-Xylene *M	36	31	<4	<4	<4	<4	49	54	23	<4	<4	ug/kg	TM15/PM10
Styrene	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg	TM15_A/PM10
Bromoform	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	ug/kg	TM15/PM10
Isopropylbenzene #	24	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg	TM15/PM10
1,1,2,2-Tetrachloroethane #M	263	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg	TM15/PM10
Bromobenzene #M	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	ug/kg	TM15/PM10
1,2,3-Trichloropropane #M	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	ug/kg	TM15/PM10
Propylbenzene # 2-Chlorotoluene	56	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	ug/kg	TM15/PM10 TM15/PM10
1,3,5-Trimethylbenzene #	<3 20	<3 <3	<3 <3	<3 <3	<3 <3	<3 <3	<3 44	<3 51	<3 <3	<3 <3	<3 <3	ug/kg ug/kg	TM15/PM10 TM15/PM10
4-Chlorotoluene	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg	TM15/PM10
tert-Butylbenzene#	<5	<5	<5	<5	<5 <5	<5	<5	<5	<5	<5	<5 <5	ug/kg	TM15/PM10
1,2,4-Trimethylbenzene #	315	111	<6	<6	<6	<6	606	833	91	<6	<6	ug/kg	TM15/PM10
sec-Butylbenzene#	203	<4	<4	<4	<4	<4	50	<4	<4	<4	<4	ug/kg	TM15/PM10
4-Isopropyltoluene #	92	<4	<4	<4	<4	<4	75	1185	<4	<4	<4	ug/kg	TM15/PM10
1,3-Dichlorobenzene #M	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	ug/kg	TM15/PM10
1,4-Dichlorobenzene #	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	ug/kg	TM15/PM10
n-Butylbenzene#	<4	<4	<4	<4	<4	<4	63	<4	<4	<4	<4	ug/kg	TM15/PM10
1,2-Dichlorobenzene #M	<4	<4	<4	<4	<4	<4	<4	926	<4	<4	<4	ug/kg	TM15/PM10
1,2-Dibromo-3-chloropropane #	<4 <7	<4	<4 <7	<4	<4	<4 <7	<4	<4	<4 <7	<4	<4	ug/kg	TM15/PM10 TM15/PM10
1,2,4-Trichlorobenzene # Hexachlorobutadiene	<4	<7 <4		<7 <4	<7 <4	<4	<7 <4	<7 <4	<4	<7 <4	<7 <4	ug/kg ug/kg	TM15/PM10 TM15/PM10
Naphthalene	<27	<27	<27	<27	<27	<27	66	252	<27	<27	<27	ug/kg ug/kg	TM15/PM10
1,2,3-Trichlorobenzene #	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	ug/kg	TM15/PM10
Surrogate Recovery Toluene D8	57	57	93	92	78	85	52	52	51	111	<0	%	TM15/PM10
Surrogate Recovery 4-Bromofluorobenzene	59	55	86	77	64	74	58	54	51	103	<0	%	TM15/PM10

Client Name: AECOM VOC Report :

Reference: 60569745
Location: VP1 (TLOR)
Contact: Alex Freeman

J E Job No.	18/7222	18/7222	18/7222	18/7222				1		
J E Sample No.	22-28	29-35	36-42	43-49				ì		
Sample ID	WS03	WS04	WS05	WS06						
Donth								Diagona		
Depth COC No / misc									e attached r ations and a	
Containers	V H HN HCL P G	V H HN HCL P G	V H HN HCL P G	V H HN HCL P G						,
Sample Date	10/05/2018		10/05/2018	10/05/2018				i		
Sample Type	Ground Water		Ground Water	Ground Water				ì		
Batch Number	1	1	1	1				100/100	Haita	Method
Date of Receipt	12/05/2018	12/05/2018	12/05/2018	12/05/2018				LOD/LOR	Units	No.
VOC MS										
Dichlorodifluoromethane	<2	<2	<2	<2				<2	ug/l	TM15/PM10
Methyl Tertiary Butyl Ether #	<0.1	2.8	<0.2 _{AA}	<0.1				<0.1	ug/l	TM15/PM10
Chloromethane #	<3	<3	<3	<3				<3	ug/l	TM15/PM10
Vinyl Chloride #	<0.1	<0.1	<0.1	<0.1				<0.1	ug/l	TM15/PM10
Bromomethane	<1 <3	<1 <3	<1 <3	<1 <3				<1 <3	ug/l	TM15/PM10 TM15/PM10
Chloroethane # Trichlorofluoromethane #	<3	<3	<3	<3				<3	ug/l ug/l	TM15/PM10
1,1-Dichloroethene (1,1 DCE) #	<3	<3	<3	<3				<3	ug/l	TM15/PM10
Dichloromethane (DCM) #	<5	<5	<5	<5				<5	ug/l	TM15/PM10
trans-1-2-Dichloroethene #	<3	<3	<3	<3				<3	ug/l	TM15/PM10
1,1-Dichloroethane#	<3	<3	<3	<3				<3	ug/l	TM15/PM10
cis-1-2-Dichloroethene #	<3	<3	<3	<3				<3	ug/l	TM15/PM10
2,2-Dichloropropane	<1	<1	<1	<1				<1	ug/l	TM15/PM10
Bromochloromethane #	<2	<2	<2	<2				<2	ug/l	TM15/PM10
Chloroform#	<2	<2	<2	<2				<2	ug/l	TM15/PM10
1,1,1-Trichloroethane #	<2	<2	<2	<2				<2	ug/l	TM15/PM10
1,1-Dichloropropene #	<3	<3	<3	<3				<3	ug/l	TM15/PM10 TM15/PM10
Carbon tetrachloride # 1,2-Dichloroethane #	<2 <2	<2 <2	<2 <2	<2 <2				<2 <2	ug/l ug/l	TM15/PM10
Benzene #	<0.5	<0.5	<0.5	<0.5				<0.5	ug/l	TM15/PM10
Trichloroethene (TCE)#	<3	<3	<3	<3				<3	ug/l	TM15/PM10
1,2-Dichloropropane #	<2	<2	<2	<2				<2	ug/l	TM15/PM10
Dibromomethane #	<3	<3	<3	<3				<3	ug/l	TM15/PM10
Bromodichloromethane #	<2	<2	<2	<2				<2	ug/l	TM15/PM10
cis-1-3-Dichloropropene	<2	<2	<2	<2				<2	ug/l	TM15/PM10
Toluene #	<5	<5	<5	<5				<5	ug/l	TM15/PM10
trans-1-3-Dichloropropene	<2	<2	<2	<2				<2	ug/l	TM15/PM10
1,1,2-Trichloroethane #	<2	<2	<2	<2 <3				<2	ug/l	TM15/PM10 TM15/PM10
Tetrachloroethene (PCE) # 1,3-Dichloropropane #	<3 <2	<3 <2	<3 <2	<3 <2				<3 <2	ug/l ug/l	TM15/PM10
Dibromochloromethane #	<2	<2	<2	<2				<2	ug/l	TM15/PM10
1,2-Dibromoethane #	<2	<2	<2	<2				<2	ug/l	TM15/PM10
Chlorobenzene #	<2	<2	<2	<2				<2	ug/l	TM15/PM10
1,1,1,2-Tetrachloroethane #	<2	<2	<2	<2				<2	ug/l	TM15/PM10
Ethylbenzene #	<1	<1	<1	<1				<1	ug/l	TM15/PM10
p/m-Xylene #	<2	<2	<2	<2				<2	ug/l	TM15/PM10
o-Xylene #	<1	<1	<1	<1				<1	ug/l	TM15/PM10
Styrene #	<2	<2	<2	<2				<2	ug/l	TM15/PM10
Bromoform #	<2 <3	<2 <3	<2 <3	<2 <3				<2 <3	ug/l ug/l	TM15/PM10 TM15/PM10
Isopropylbenzene # 1,1,2,2-Tetrachloroethane	<3 <4	<3 <4	<3 <4	<3 <4				<3 <4	ug/I ug/I	TM15/PM10
Bromobenzene #	<2	<2	<2	<2				<2	ug/l	TM15/PM10
1,2,3-Trichloropropane #	<3	<3	<3	<3				<3	ug/l	TM15/PM10
Propylbenzene #	<3	<3	<3	<3				<3	ug/l	TM15/PM10
2-Chlorotoluene #	<3	<3	<3	<3				<3	ug/l	TM15/PM10
1,3,5-Trimethylbenzene #	<3	<3	<3	<3				<3	ug/l	TM15/PM10
4-Chlorotoluene #	<3	<3	<3	<3				<3	ug/l	TM15/PM10
tert-Butylbenzene #	<3	<3	<3	<3				<3	ug/l	TM15/PM10
1,2,4-Trimethylbenzene#	<3	<3	<3	<3				<3	ug/l	TM15/PM10
sec-Butylbenzene#	<3 <3	<3 <3	<3 <3	<3 <3				<3 <3	ug/l	TM15/PM10 TM15/PM10
4-Isopropyltoluene [#] 1,3-Dichlorobenzene [#]	<3 <3	<3 <3	<3 <3	<3 <3				<3 <3	ug/l ug/l	TM15/PM10
1,4-Dichlorobenzene #	<3	<3	<3	<3				<3	ug/l	TM15/PM10
n-Butylbenzene#	<3	<3	<3	<3				<3	ug/l	TM15/PM10
1,2-Dichlorobenzene #	<3	<3	<3	<3				<3	ug/l	TM15/PM10
1,2-Dibromo-3-chloropropane	<2	<2	<2	<2				<2	ug/l	TM15/PM10
1,2,4-Trichlorobenzene	<3	<3	<3	<3				<3	ug/l	TM15/PM10
Hexachlorobutadiene	<3	<3	<3	<3				<3	ug/l	TM15/PM10
Naphthalene	<2	<2	<2	<2				<2	ug/l	TM15/PM10
1,2,3-Trichlorobenzene	<3	<3	<3	<3				<3	ug/l	TM15/PM10
Surrogate Recovery Toluene D8	95	96	98	96				<0	%	TM15/PM10
Surrogate Recovery 4-Bromofluorobenzene	96	96	100	101			<u> </u>	<0	%	TM15/PM10

Liquid

Job number: 18/5166 Method: VOC Sample number: 4 Matrix: Solid

Sample identity:BH01Sample depth:0.45-0.70Sample Type:SoilUnits:ug/kg

CAS No.	Tentative Compound Identification	Retention Time (minutes)	% Match	Concentration
565-59-3	Pentane, 2,3-dimethyl-	4.035	90	163
16883-48-0	Cyclopentane, 1,2,4-trimethyl-, (1.alpha.,2.beta.,4.alpha.)-	4.626	91	139
565-75-3	Pentane, 2,3,4-trimethyl-	4.689	80	299
560-21-4	Pentane, 2,3,3-trimethyl-	4.746	80	291
2207-01-4	Cyclohexane, 1,2-dimethyl-, cis-	5.029 - 5.348	87,91	341
6876-23-9	Cyclohexane, 1,2-dimethyl-, trans-	5.105	97	350
2234-75-5	Cyclohexane, 1,2,4-trimethyl-	5.394	80	461
7667-60-9	Cyclohexane, 1,2,4-trimethyl-, (1.alpha.,2.beta.,4.beta.)-	5.493	95	340
3114-55-4	Chlorobenzene-d5	5.621	91	1372
5911-04-6	Nonane, 3-methyl-	5.956	90	820
506-51-4	n-Tetracosanol-1	6.459	80	623
2425-77-6	1-Decanol, 2-hexyl-	6.627	90	890
1678-81-5	Cyclohexane, 1,2,3-trimethyl-, (1.alpha.,2.beta.,3.alpha.)-	6.789	89	372
933-98-2	Benzene, 1-ethyl-2,3-dimethyl-	7.109	90	1034
76089-59-3	1,3-Cyclopentadiene, 1,2,3,4-tetramethyl-5-methylene-	7.344	80	396
2958-76-1	Naphthalene, decahydro-2-methyl-	7.382	86	876

Job number: 18/5384 Method: VOC Sample number: 7 Matrix: Solid

Sample identity:TP01Sample depth:0.70-0.90Sample Type:SoilUnits:ug/kg

CAS No.	Tentative Compound Identification	Retention Time (minutes)	% Match	Concentration
-	trans-Decalin, 2-methyl-	7.270	89	357
2958-76-1	Naphthalene, decahydro-2-methyl-	7.384	83	292

Job number: 18/5384 Method: VOC Sample number: 13 Matrix: Solid

Sample identity:TP02Sample depth:0.30-0.50Sample Type:SoilUnits:ug/kg

CAS No.	Tentative Compound Identification	Retention Time (minutes)	% Match	Concentration
96-14-0	Pentane, 3-methyl-	3.174	90	334
108-08-7	Pentane, 2,4-dimethyl-	3.646	83	154
565-59-3	Pentane, 2,3-dimethyl-	4.034	94	828
589-34-4	Hexane, 3-methyl-	4.079	94	783
1638-26-2	Cyclopentane, 1,1-dimethyl-	4.108	86	352
872-56-0	Isopropylcyclobutane	4.233	93	432
2815-58-9	Cyclopentane, 1,2,4-trimethyl-	4.626	91	957
589-53-7	Heptane, 4-methyl-	4.778	91	955
2207-01-4	Cyclohexane, 1,2-dimethyl-, cis-	5.023	81	1512
6876-23-9	Cyclohexane, 1,2-dimethyl-, trans-	5.105	97	2017
2207-03-6	Cyclohexane, 1,3-dimethyl-, trans-	5.153	93	1110
2234-75-5	Cyclohexane, 1,2,4-trimethyl-	5.336	83	664
3073-66-3	Cyclohexane, 1,1,3-trimethyl-	5.394	94	4705
619-99-8	Hexane, 3-ethyl-	5.446	80	2024
2216-33-3	Octane, 3-methyl-	5.539	80	1413
3728-57-2	Cyclopentane, 1-methyl-2-propyl-	5.707	93	1148
6236-88-0	Cyclohexane, 1-ethyl-4-methyl-, trans-	5.739	91	2325
19398-86-8	cis-3-Decene	5.810	81	425
15869-94-0	Octane, 3,6-dimethyl-	5.955	91	3026
2847-72-5	Decane, 4-methyl-	6.512	83	3218
-	Oxalic acid, cyclobutyl heptadecyl ester	6.627	80	1626
7058-01-7	Cyclohexane, (1-methylpropyl)-	6.680	81	1990
105-05-5	Benzene, 1,4-diethyl-	6.871	84	754
527-84-4	o-Cymene	7.109	94	1704
-	trans-Decalin, 2-methyl-	7.274	87	2398
95-93-2	Benzene, 1,2,4,5-tetramethyl-	7.344	94	623
2958-76-1	Naphthalene, decahydro-2-methyl-	7.383	92	1088

Job number:18/5455Method:VOCSample number:1Matrix:Solid

Sample identity:BH02Sample depth:0.60-1.00Sample Type:SoilUnits:ug/kg

CAS No.	Tentative Compound Identification	Retention Time (minutes)	% Match	Concentration
463-58-1	Carbonyl sulfide	1.274	90	186

Job number:18/5166Method:SVOCSample number:5Matrix:Solid

Sample identity:BH01Sample depth:0.45-0.70Sample Type:SoilUnits:ug/kg

CAS No.	Tentative Compound Identification	Retention Time (minutes)	% Match	Concentration
638-36-8	Hexadecane, 2,6,10,14-tetramethyl-	10.545	95	1411

Job number:18/5166Method:SVOCSample number:14Matrix:Solid

Sample identity:WS01Sample depth:1.00-1.25Sample Type:SoilUnits:ug/kg

CAS No.	Tentative Compound Identification	Retention Time (minutes)	% Match	Concentration
3891-98-3	Dodecane, 2,6,10-trimethyl-	10.545	94	1528

Job number:18/5384Method:SVOCSample number:8Matrix:Solid

Sample identity:TP01Sample depth:0.70-0.90Sample Type:SoilUnits:ug/kg

CAS No.	Tentative Compound Identification	Retention Time (minutes)	% Match	Concentration
493-02-7	Naphthalene, decahydro-, trans-	5.805	90	1122
-	trans-Decalin, 2-methyl-	6.326	97	1050
2958-76-1	Naphthalene, decahydro-2-methyl-	6.473	95	2269
62199-51-3	Cyclopentane, 1-pentyl-2-propyl-	7.673	86	1382
90-12-0	Naphthalene, 1-methyl-	7.738	93	3064
3891-98-3	Dodecane, 2,6,10-trimethyl-	8.265	90	2465
13360-61-7	1-Pentadecene	8.387	83	3966
581-42-0	Naphthalene, 2,6-dimethyl-	8.465	97	788
582-16-1	Naphthalene, 2,7-dimethyl-	8.569	93	1403
2131-42-2	Naphthalene, 1,4,6-trimethyl-	9.194	96	4316
2245-38-7	Naphthalene, 1,6,7-trimethyl-	9.293	97	2204
13187-99-0	2-Bromo dodecane	9.775	89	3906
529-05-5	Chamazulene	9.931	93	2686
7350-72-3	1,4-Methanonaphthalene,1,4-dihydro-9-((1-methylethylidene)-	10.004	93	4447
55045-07-3	Dodecane, 2-methyl-8-propyl-	10.064	86	6256
832-69-9	Phenanthrene, 1-methyl-	10.923	86	6045
832-64-4	Phenanthrene, 4-methyl-	11.002	90	5121
89816-75-1	2,6-Dimethyldibenzothiophene	11.262	80	5352
2381-21-7	Pyrene, 1-methyl-	12.528	89	2957
2175-90-8	6,6-Diphenylfulvene	13.086	91	1926
64401-21-4	Pyrene, 1,3-dimethyl-	13.206	90	2930
288246-53-7	Pyridine-3-carboxamide, oxime, N-(2-trifluoromethylphenyl)-	13.865	91	2246
54482-31-4	D-Homoandrostane, (5.alpha.,13.alpha.)-	14.822	90	1244
98496-82-3	Antra-9,10-quinone, 1-(3-hydrohy-3-phenyl-1-triazenyl)-	17.032	86	3885

Job number:18/5384Method:SVOCSample number:14Matrix:Solid

Sample identity:TP02Sample depth:0.30-0.50Sample Type:SoilUnits:ug/kg

CAS No.	Tentative Compound Identification	Retention Time (minutes)	% Match	Concentration
15869-94-0	Octane, 3,6-dimethyl-	4.547	90	1479
14676-29-0	Heptane, 3-ethyl-2-methyl-	4.635	81	1611
2847-72-5	Decane, 4-methyl-	5.500	83	2762
1678-93-9	Cyclohexane, butyl-	5.581	83	657
493-02-7	Naphthalene, decahydro-, trans-	5.804	93	2381
527-84-4	o-Cymene	5.918	92	2969
933-98-2	Benzene, 1-ethyl-2,3-dimethyl-	6.159	90	1224
95-93-2	Benzene, 1,2,4,5-tetramethyl-	6.305	97	1971
-	trans-Decalin, 2-methyl-	6.326	98	246
13150-81-7	2,6-Dimethyldecane	6.389	89	2040
1758-85-6	Benzene, 2,4-diethyl-1-methyl-	6.609	86	868
53172-84-2	Benzene, (1-methyl-1-butenyl)-	7.438	90	2858
75163-97-2	Octadecane, 2,6-dimethyl-	7.594	90	2717
62199-51-3	Cyclopentane, 1-pentyl-2-propyl-	7.673	90	2810
2613-76-5	1H-Indene, 2,3-dihydro-1,1,3-trimethyl-	7.843	89	7319
3891-98-3	Dodecane, 2,6,10-trimethyl-	8.272	94	7253
582-16-1	Naphthalene, 2,7-dimethyl-	8.465	97	11515
2131-42-2	Naphthalene, 1,4,6-trimethyl-	8.953	96	4000
2245-38-7	Naphthalene, 1,6,7-trimethyl-	9.194	98	7282
829-26-5	Naphthalene, 2,3,6-trimethyl-	9.293	98	7932
3892-00-0	Pentadecane, 2,6,10-trimethyl-	9.775	93	8945
529-05-5	Chamazulene	9.859	94	1926
1921-70-6	Pentadecane, 2,6,10,14-tetramethyl-	10.064	96	17326
7350-72-3	1,4-Methanonaphthalene,1,4-dihydro-9-((1-methylethylidene)-	10.112	86	3154
51282-56-5	Ethyl 5-chloro-2-nitrobenzoate	10.232	92	1565
638-36-8	Hexadecane, 2,6,10,14-tetramethyl-	10.545	96	19194
67388-11-8	4-Methylnaphtho[1,2-b]thiophene	10.803	95	6863
832-64-4	Phenanthrene, 4-methyl-	10.903	90	3804
610-48-0	Anthracene, 1-methyl-	10.923	95	8606
2531-84-2	Phenanthrene, 2-methyl-	11.012	95	9265

Job number: 18/5384 Method: SVOC Sample number: 14 Matrix: Solid

Sample identity:TP02Sample depth:0.30-0.50Sample Type:SoilUnits:ug/kg

CAS No.	Tentative Compound Identification	Retention Time (minutes)	% Match	Concentration
89816-75-1	2,6-Dimethyldibenzothiophene	11.262	96	4651
31317-19-8	2,7-Dimethyldibenzothiophene	11.371	93	5853
2789-88-0	di-p-Tolylacetylene	11.511	93	6689
85385-68-8	[14]Annulene, 1,6:8,13-bis(methano)-, syn	11.531	93	6356
4443-60-1	Cyclohexane, (1-hexyltetradecyl)-	11.700	81	3109
2380-32-7	Octadecanoic acid, 17-oxo-, methyl ester	12.199	90	519
25186-71-4	3-Chloro-1-anthraquinonecarboxylic acid	13.985	91	1725
288246-53-7	Pyridine-3-carboxamide, oxime, N-(2-trifluoromethylphenyl)-	14.324	91	2517
98496-82-3	Antra-9,10-quinone, 1-(3-hydrohy-3-phenyl-1-triazenyl)-	15.905	86	1164
112-95-8	Eicosane	16.039	90	2080
62016-79-9	Heptacosane, 1-chloro-	16.996	97	12910

Exova Jones Environmental Asbestos Analysis

 Client Name:
 AECOM

 Reference:
 60569745

 Location:
 VP1 (TLOR)

 Contact:
 Alex Freeman

Note:

Asbestos Screen analysis is carried out in accordance with our documented in-house methods PM042 and TM065 and HSG 248 by Stereo and Polarised Light Microscopy using Dispersion Staining Techniques and is covered by our UKAS accreditation. Detailed Gravimetric Quantification and PCOM Fibre Analysis is carried out in accordance with our documented in-house methods PM042 and TM131 and HSG 248 using Stereo and Polarised Light Microscopy and Phase Contrast Optical Microscopy (PCOM). Samples are retained for not less than 6 months from the date of analysis unless specifically requested.

Opinions, including ACM type and Asbestos level, lie outside the scope of our UKAS accreditation.

Where the sample is not taken by a Jones Environmental Laboratory consultant, Jones Environmental Laboratory cannot be responsible for inaccurate or unrepresentative sampling.

Signed on behalf of Jones Environmental Laboratory:

Ryan Butterworth
Asbestos Team Leader

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Date Of Analysis	Analysis	Result
18/5166	1	BH06	0.40-0.70	3	11/04/2018	General Description (Bulk Analysis)	soil-stones
					11/04/2018	Asbestos Fibres	NAD
					11/04/2018	Asbestos Fibres (2)	NAD
					11/04/2018	Asbestos ACM	NAD
					11/04/2018	Asbestos ACM (2)	NAD
					11/04/2018	Asbestos Type	NAD
					11/04/2018	Asbestos Type (2)	NAD
					11/04/2018	Asbestos Level Screen	NAD
18/5166	1	BH01	0.45-0.70	6	11/04/2018	General Description (Bulk Analysis)	Soil/Stones
					11/04/2018	Asbestos Fibres	Fibre Bundles
					11/04/2018	Asbestos ACM	NAD
					11/04/2018	Asbestos Type	Chrysotile
					11/04/2018	Asbestos Level Screen	less than 0.1%
					30/04/2018	Total ACM Gravimetric Quantification (% Asb)	<0.001 (mass %)
					30/04/2018	Total Detailed Gravimetric Quantification (% Asb)	<0.001 (mass %)
					30/04/2018	Total Gravimetric Quantification (ACM + Detailed) (% Asb)	<0.001 (mass %)
					30/04/2018	Asbestos PCOM Quantification (Fibres)	<0.001 (mass %)
					30/04/2018	Asbestos Gravimetric & PCOM Total	<0.001 (mass %)
18/5166	1	TT03	0.00-1.40	9	11/04/2018	General Description (Bulk Analysis)	Soil/Stones
					11/04/2018	Asbestos Fibres	NAD
					11/04/2018	Asbestos Fibres (2)	NAD
					11/04/2018	Asbestos ACM	NAD
					11/04/2018	Asbestos ACM (2)	NAD
					11/04/2018	Asbestos Type	NAD
					11/04/2018	Asbestos Type (2)	NAD
					11/04/2018	Asbestos Level Screen	NAD
18/5166	1	TT02	0.50-1.20	12	11/04/2018	General Description (Bulk Analysis)	soil/stones
					11/04/2018	Asbestos Fibres	NAD
					11/04/2018	Asbestos Fibres (2)	NAD
					11/04/2018	Asbestos ACM	NAD
					11/04/2018	Asbestos ACM (2)	NAD
					11/04/2018	Asbestos Type	NAD
					11/04/2018	Asbestos Type (2)	NAD
					11/04/2018	Asbestos Level Screen	NAD

Client Name: AECOM
Reference: 60569745
Location: VP1 (TLOR)
Contact: Alex Freeman

Date								
	Job	Batch	Sample ID	Depth	Sample		Analysis	Result
19	18/5166	1	WS01	1 00-1 25	15	11/04/2018	General Description (Bulk Analysis)	soil/stones
1	10/0100			1.00 1.20	10			
185106 1								
186106 1								
1871 1871								
18-51 18-5								
18516 1								
10,516								
18/5106 1								
18/5166 1								
18/51 1						30/04/2016	Aspestos Gravimetric & PCOW Total	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
Main	10/5100	4	WSO4	0.50	40	44/04/2040	Consul Description (Bulls Analysis)	201/24222
Abbestos Fibres (2)	18/3100		W304	0.50	18			
Abbestos ACM (2) Abbestos ACM (2) Abbestos ACM (2) Abbestos ACM (2) ADD Abbestos ACM (2) ADD Abbestos Type (2) ADD Abbestos Type (3) Abbestos Type (3) Abbestos Type (3) Abbestos Type (3) Abbestos Type (3) Abbestos Type (3) Abbestos Type (3) Abbestos Type (3) Abbestos Type (3) Abbestos Type (3) Abbestos Type (3) Abbestos Type (3) Abbestos Type (3) Abbestos Type (3) Abbestos Type (3) Abbestos Fibres (3) ADD Abbestos ACM (3) ADD Abbestos ACM (3) ADD Abbestos ACM (3) ADD Abbestos ACM (3) ADD Abbestos ACM (3) ADD Abbestos ACM (3) ADD Abbestos ACM (3) ADD Abbestos ACM (3) ADD Abbestos ACM (3) ADD Abbestos Type (2) ADD Abbestos Type (3) ADD Abbestos Type (3) ADD Abbestos Type (3) ADD Abbestos Type (3) ADD Abbestos Type (3) ADD Abbestos Type (4) Abbestos Type (4) Abbestos Type (6) ADD Abbestos Type (7) ADD Abbestos Type (8) ADD Abbestos Type (8) ADD Abbestos Type (8) ADD Abbestos Type (8) ADD Abbestos Type (8) ADD Abbestos Type (9) ADD Abbestos Type (9) ADD Abbestos Type (1) ADD Abbestos Fibres (3) ADD Abbestos Type (1) ADD Abbestos Type (1) ADD Abbestos Fibres (3) ADD Abbestos Fibres (3) ADD Abbestos Type (4) ADD Abbestos Type (6) ADD Abbestos Type (7) ADD Abbestos Type (8) ADD Abbestos Type (9) ADD ADD ABBESTOR TYPE (9) ADD ADD ADD ADD ADD ADD ADD ADD ADD AD								
Abbestos ACM (2) Abbestos ACM (2) Abbestos Type (2) NAD NAD Abbestos Stype (3) NAD Abbestos Stype (3) NAD Abbestos Stype (3) NAD Abbestos ACM (2) NAD Abbestos ACM (2) NAD Abbestos ACM (2) NAD Abbestos ACM (2) NAD Abbestos ACM (3) NAD Abbestos Type (3) NAD Abbestos ACM (3) NAD Abbestos Type (3) NAD Abbestos ACM (3) NAD Abbestos ACM (3) NAD Abbestos Type (3) NAD Abbestos Type (4) NAD Abbestos Type (6) NAD Abbestos Type (7) NAD Abbestos Type (8) NAD Abbes							` ,	
National National								
National							` '	
18/5166 1							• •	
18/5166 1								
NAD						11/04/2018	Asbestos Level Screen	NAD
NAD								
Nabestos Fibres (2)	18/5166	1	TP10	0.40-0.60	21		, , , , ,	
19/5333 1 TP09						11/04/2018		
NAD NAD						11/04/2018	Asbestos Fibres (2)	
NAD NAD						11/04/2018	Asbestos ACM	NAD
NAD NAD						11/04/2018	Asbestos ACM (2)	NAD
18/5333 1 TT01 1.70-1.90 3 16/04/2018 2 2 2 2 2 2 2 2 2						11/04/2018	Asbestos Type	NAD
18/5333 1 TT01 1.70-1.90 3 16/04/2018 Asbestos Fibres NAD Asbestos Fibres NAD Asbestos Fibres NAD Asbestos Fibres NAD NA						11/04/2018	Asbestos Type (2)	NAD
16/04/2018						11/04/2018	Asbestos Level Screen	NAD
16/04/2018								
18/5333 1 TPO9 0.30-0.40 6 16/04/2018 16/04	18/5333	1	TT01	1.70-1.90	3	16/04/2018		
Asbestos ACM NAD N						16/04/2018	Asbestos Fibres	NAD
16/04/2018						16/04/2018	Asbestos Fibres (2)	NAD
16/04/2018						16/04/2018	Asbestos ACM	NAD
Asbestos Type (2)						16/04/2018	Asbestos ACM (2)	NAD
18/5333 1 TP09 0.30-0.40 6 16/04/2018 16/04						16/04/2018	Asbestos Type	NAD
18/5333 1 TP09 0.30-0.40 6 16/04/2018 Asbestos Fibres NAD						16/04/2018	* * * * * * * * * * * * * * * * * * * *	
16/04/2018						16/04/2018	Asbestos Level Screen	NAD
16/04/2018								
16/04/2018 16/04/2018 Asbestos Fibres (2) NAD	18/5333	1	TP09	0.30-0.40	6		. , , , , ,	
16/04/2018 16/								
16/04/2018							` ,	
16/04/2018						16/04/2018		
16/04/2018						16/04/2018	Asbestos ACM (2)	NAD
16/04/2018						16/04/2018	Asbestos Type	NAD
18/5333 1 TP07 1.30-1.60 9 16/04/2018 General Description (Bulk Analysis) Soil/Stone 16/04/2018 16/04/2018 Asbestos Fibres NAD Asbestos Fibres (2) NAD Asbestos ACM NAD NAD NAD Asbestos ACM (2) NAD						16/04/2018	Asbestos Type (2)	NAD
16/04/2018						16/04/2018	Asbestos Level Screen	NAD
16/04/2018								
16/04/2018 Asbestos Fibres (2) NAD 16/04/2018 Asbestos ACM NAD 16/04/2018 Asbestos ACM (2) NAD	18/5333	1	TP07	1.30-1.60	9	16/04/2018	General Description (Bulk Analysis)	Soil/Stone
16/04/2018 Asbestos ACM NAD 16/04/2018 Asbestos ACM (2) NAD						16/04/2018	Asbestos Fibres	NAD
16/04/2018 Asbestos ACM (2) NAD						16/04/2018	Asbestos Fibres (2)	NAD
						16/04/2018	Asbestos ACM	NAD
						16/04/2018	Asbestos ACM (2)	NAD
16/04/2018 Asbestos Type NAD						16/04/2018	Asbestos Type	NAD

Client Name: AECOM
Reference: 60569745
Location: VP1 (TLOR)
Contact: Alex Freeman

Contact	•		Alex Free	illall			
J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Date Of Analysis	Analysis	Result
18/5333	1	TP07	1.30-1.60	9	16/04/2018	Asbestos Type (2)	NAD
					16/04/2018	Asbestos Level Screen	NAD
18/5333	1	TP08	0.20-0.50	15	16/04/2018	General Description (Bulk Analysis)	soil.stones
			0.2000		16/04/2018	Asbestos Fibres	NAD
					16/04/2018	Asbestos Fibres (2)	NAD
					16/04/2018	Asbestos ACM	NAD
					16/04/2018	Asbestos ACM (2)	NAD
					16/04/2018	Asbestos Type	NAD
					16/04/2018	Asbestos Type (2)	NAD
					16/04/2018	Asbestos Level Screen	NAD
					10/04/2010	Asbestos Level ociden	I VAD
18/5333	1	WS02	0.00-0.50	18	16/04/2018	General Description (Bulk Analysis)	Soil/Stone
10/0000	- '	VV 302	0.00-0.50	10		General Description (Bulk Analysis)	
					16/04/2018	Asbestos Fibres	NAD
					16/04/2018	Asbestos Fibres (2)	NAD
					16/04/2018	Asbestos ACM	NAD
					16/04/2018	Asbestos ACM (2)	NAD
						Asbestos Type	NAD
					16/04/2018	Asbestos Type (2)	NAD
					16/04/2018	Asbestos Level Screen	NAD
18/5333	1	TP05	0.50-0.70	21	16/04/2018	General Description (Bulk Analysis)	Soil/Stone
					16/04/2018	Asbestos Fibres	NAD
					16/04/2018	Asbestos Fibres (2)	NAD
					16/04/2018	Asbestos ACM	NAD
					16/04/2018	Asbestos ACM (2)	NAD
					16/04/2018	Asbestos Type	NAD
					16/04/2018	Asbestos Type (2)	NAD
					16/04/2018	Asbestos Level Screen	NAD
18/5333	1	WS05	0.50-1.00	24	16/04/2018	General Description (Bulk Analysis)	Soil/Stone
					16/04/2018	Asbestos Fibres	NAD
					16/04/2018	Asbestos Fibres (2)	NAD
					16/04/2018	Asbestos ACM	NAD
					16/04/2018	Asbestos ACM (2)	NAD
					16/04/2018	Asbestos Type	NAD
					16/04/2018	Asbestos Type (2)	NAD
					16/04/2018	Asbestos Level Screen	NAD
18/5333	1	TP04	0.80-1.00	27	16/04/2018	General Description (Bulk Analysis)	Soil/Stone
					16/04/2018	Asbestos Fibres	NAD
					16/04/2018	Asbestos Fibres (2)	NAD
					16/04/2018	Asbestos ACM	NAD
					16/04/2018	Asbestos ACM (2)	NAD
					16/04/2018	Asbestos Type	NAD
					16/04/2018	Asbestos Type (2)	NAD
					16/04/2018	Asbestos Level Screen	NAD
18/5333	1	WS03	0.00-1.20	29	16/04/2018	General Description (Bulk Analysis)	soil.stones
					16/04/2018	Asbestos Fibres	NAD
					16/04/2018	Asbestos Fibres (2)	NAD
					16/04/2018	Asbestos ACM	NAD
						Asbestos ACM (2)	NAD
					.5,5-,2010		

Client Name: AECOM
Reference: 60569745
Location: VP1 (TLOR)
Contact: Alex Freeman

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Date Of Analysis	Analysis	Result
18/5333	1	WS03	0.00-1.20	29	16/04/2018	Asbestos Type	NAD
10,0000			0.00 1.20		16/04/2018	Asbestos Type (2)	NAD
					16/04/2018	Asbestos Level Screen	NAD
					10/04/2010	Aspesios Level Scieen	IVAU
18/5384	1	TP06	0.40-0.60	3	17/04/2018	General Description (Bulk Analysis)	Soil/Stone
					17/04/2018	Asbestos Fibres	Fibre Bundles
					17/04/2018	Asbestos ACM	NAD
					17/04/2018	Asbestos Type	Chrysotile
					17/04/2018	Asbestos Level Screen	less than 0.1%
					26/04/2018	Total ACM Gravimetric Quantification (% Asb)	<0.001 (mass %)
					26/04/2018	Total Detailed Gravimetric Quantification (% Asb)	<0.001 (mass %)
					26/04/2018	Total Gravimetric Quantification (ACM + Detailed) (% Asb)	<0.001 (mass %)
					26/04/2018	Asbestos PCOM Quantification (Fibres)	<0.001 (mass %)
					26/04/2018	Asbestos Gravimetric & PCOM Total	<0.001 (mass %)
18/5384	1	TP01	0.70-0.90	9	17/04/2018	General Description (Bulk Analysis)	Soil/Stone
					17/04/2018	Asbestos Fibres	Fibre Bundles
					17/04/2018	Asbestos ACM	NAD
					17/04/2018	Asbestos Type	Chrysotile
					17/04/2018	Asbestos Level Screen	less than 0.1%
					26/04/2018	Total ACM Gravimetric Quantification (% Asb)	<0.001 (mass %)
					26/04/2018	Total Detailed Gravimetric Quantification (% Asb)	<0.001 (mass %)
					26/04/2018	Total Gravimetric Quantification (ACM + Detailed) (% Asb)	<0.001 (mass %)
					26/04/2018	Asbestos PCOM Quantification (Fibres)	<0.001 (mass %)
					26/04/2018	Asbestos Gravimetric & PCOM Total	<0.001 (mass %)
18/5384	1	TP02	0.30-0.50	15	17/04/2018	General Description (Bulk Analysis)	Soil/Stone
					17/04/2018	Asbestos Fibres	Fibre Bundles
					17/04/2018	Asbestos ACM	NAD
					17/04/2018	Asbestos Type	Chrysotile
					17/04/2018	Asbestos Level Screen	less than 0.1%
					26/04/2018	Total ACM Gravimetric Quantification (% Asb)	<0.001 (mass %)
					26/04/2018	Total Detailed Gravimetric Quantification (% Asb)	<0.001 (mass %)
					26/04/2018	Total Gravimetric Quantification (ACM + Detailed) (% Asb)	<0.001 (mass %)
					26/04/2018	Asbestos PCOM Quantification (Fibres)	<0.001 (mass %)
					26/04/2018	Asbestos Gravimetric & PCOM Total	<0.001 (mass %)
18/5384	1	WS06	0.00-1.20	21	17/04/2018	General Description (Bulk Analysis)	Soil/Stone
					17/04/2018	Asbestos Fibres	NAD
					17/04/2018	Asbestos Fibres (2)	NAD
					17/04/2018	Asbestos ACM	NAD
					17/04/2018	Asbestos ACM (2)	NAD
					17/04/2018	Asbestos Type	NAD
					17/04/2018	Asbestos Type (2)	NAD
					17/04/2018	Asbestos Level Screen	NAD
18/5384	1	BH03	1.50-2.00	24	17/04/2018	General Description (Bulk Analysis)	Soil/Stone
					17/04/2018	Asbestos Fibres	NAD
					17/04/2018	Asbestos Fibres (2)	NAD
					17/04/2018	Asbestos ACM	NAD
					17/04/2018	Asbestos ACM (2)	NAD
					17/04/2018	Asbestos Type	NAD
					17/04/2018	Asbestos Type (2)	NAD
						· · · · · · · · · · · · · · · · · · ·	

Client Name: AECOM
Reference: 60569745
Location: VP1 (TLOR)
Contact: Alex Freeman

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Date Of Analysis	Analysis	Result
110.				140.			
18/5384	1	BH03	1.50-2.00	24	17/04/2018	Asbestos Level Screen	NAD
18/5384	1	WS07	0.30-0.80	27	17/04/2018	General Description (Bulk Analysis)	Soil/Stone
	-				17/04/2018		NAD
					17/04/2018		NAD
						` '	
					17/04/2018		NAD
					17/04/2018	Asbestos ACM (2)	NAD
					17/04/2018	• • • • • • • • • • • • • • • • • • • •	NAD
					17/04/2018		NAD
					17/04/2018	Asbestos Level Screen	NAD
18/5384	1	WS08	0.00-1.20	30	17/04/2018	General Description (Bulk Analysis)	Soil/Stone
					17/04/2018	Asbestos Fibres	NAD
					17/04/2018	Asbestos Fibres (2)	NAD
					17/04/2018	Asbestos ACM	NAD
					17/04/2018	Asbestos ACM (2)	NAD
					17/04/2018	Asbestos Type	NAD
					17/04/2018	Asbestos Type (2)	NAD
					17/04/2018	Asbestos Level Screen	NAD
18/5455	1	BH02	0.60-1.00	3	18/04/2018	General Description (Bulk Analysis)	soil/stones
				-	18/04/2018	Asbestos Fibres	Fibre Bundles
					18/04/2018	Asbestos ACM	NAD
					18/04/2018	Asbestos Type	Chrysotile
					18/04/2018	Asbestos Level Screen	less than 0.1%
					26/04/2018	Total ACM Gravimetric Quantification (% Asb)	<0.001 (mass %)
					26/04/2018	Total Detailed Gravimetric Quantification (% Asb)	<0.001 (mass %)
					26/04/2018	Total Gravimetric Quantification (ACM + Detailed) (% Asb)	<0.001 (mass %)
					26/04/2018	Asbestos PCOM Quantification (Fibres)	<0.001 (mass %)
					26/04/2018	Asbestos Gravimetric & PCOM Total	<0.001 (mass %)
40/5775		DI IO4	0.50.4.00		04/04/0040	Company Deposits of Posts Amelians	Soil/Stone
18/5775	1	BH04	0.50-1.20	3	24/04/2018	General Description (Bulk Analysis)	
					24/04/2018		NAD
					24/04/2018		NAD
					24/04/2018		NAD
					24/04/2018		NAD
						Asbestos Type	NAD
						,, ,,	NAD
					24/04/2018	Asbestos Level Screen	NAD
18/5775	1	BH05	1.80-2.25	6	24/04/2018	General Description (Bulk Analysis)	Soil/Stone
					24/04/2018		NAD
					24/04/2018	Asbestos Fibres (2)	NAD
					24/04/2018	Asbestos ACM	NAD
					24/04/2018	Asbestos ACM (2)	NAD
					24/04/2018	Asbestos Type	NAD
					24/04/2018	Asbestos Type (2)	NAD
					24/04/2018	Asbestos Level Screen	NAD
						ı	I .

Exova Jones Environmental

NDP Reason Report

Client Name: AECOM Matrix : Solid

Reference: 60569745
Location: VP1 (TLOR)
Contact: Alex Freeman

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	NDP Reason
18/5166	1	BH01	0.45-0.70	4-6	Asbestos detected in sample
18/5166	1	WS01	1.00-1.25	13-15	Asbestos detected in sample
18/5384	1	TP06	0.40-0.60	1-3	Asbestos detected in sample
18/5384	1	TP01	0.70-0.90	7-9	Asbestos detected in sample
18/5384	1	TP02	0.30-0.50	13-15	Asbestos detected in sample
18/5455	1	BH02	0.60-1.00	1-3	Asbestos detected in sample

Exova Jones Environmental

Notification of Deviating Samples

Client Name: AECOM Matrix : Liquid

Reference: 60569745
Location: VP1 (TLOR)
Contact: Alex Freeman

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Analysis	Reason

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 18/7222 18/5333 18/5166 18/5455 18/5775 18/5384

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

Samples must be received in a condition appropriate to the requested analyses. All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. If this is not the case you will be informed and any test results that may be compromised highlighted on your deviating samples report.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

ABBREVIATIONS and ACRONYMS USED

# ISO17025 (UKAS Ref No. 1225) accredited - UK. SA ISO17025 (SANAS Ref No. T0729) accredited - South Africa. B Indicates analyte found in associated method blank. DR Dilution required. M MCERTS accredited. NA Not applicable NAD No Asbestos Detected. ND None Detected (usually refers to VOC and/SVOC TICs). NDP No Determination Possible SS Calibrated against a single substance SV Surrogate recovery outside performance criteria. This may be due to a matrix effect. W Results expressed on as received basis. + AQC failure, accreditation has been removed from this result, if appropriate, see "Note" on previous page. ++ Result outside calibration range, results should be considered as indicative only and are not accredited. * Analysis subcontracted to an Exova Jones Environmental approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LODILOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS ACC Sample LB Blank Sample N Client Sample OC Outside Calibration Range AA x2 Dilution		
B Indicates analyte found in associated method blank. DR Dilution required. M MCERTS accredited. NA Not applicable NAD No Asbestos Detected. ND None Detected (usually refers to VOC and/SVOC TICs). NDP No Determination Possible SS Calibrated against a single substance SV Surrogate recovery outside performance criteria. This may be due to a matrix effect. W Results expressed on as received basis. + AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page. ++ Result outside calibration range, results should be considered as indicative only and are not accredited. * Analysis subcontracted to an Exova Jones Environmental approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample TB Trip Blank Sample OC Outside Calibration Range	#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
DR Dilution required. M MCERTS accredited. NA Not applicable NAD No Asbestos Detected. ND None Detected (usually refers to VOC and/SVOC TICs). NDP No Determination Possible SS Calibrated against a single substance SV Surrogate recovery outside performance criteria. This may be due to a matrix effect. W Results expressed on as received basis. + AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page. ++ Result outside calibration range, results should be considered as indicative only and are not accredited. * Analysis subcontracted to an Exova Jones Environmental approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample TB Trip Blank Sample OC Outside Calibration Range	SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa.
M MCERTS accredited. NA Not applicable NAD No Asbestos Detected. ND None Detected (usually refers to VOC and/SVOC TICs). NDP No Determination Possible SS Calibrated against a single substance SV Surrogate recovery outside performance criteria. This may be due to a matrix effect. W Results expressed on as received basis. + AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page. ++ Result outside calibration range, results should be considered as indicative only and are not accredited. * Analysis subcontracted to an Exova Jones Environmental approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample Trip Blank Sample OC Outside Calibration Range	В	Indicates analyte found in associated method blank.
NA Not applicable NAD No Asbestos Detected. ND None Detected (usually refers to VOC and/SVOC TICs). NDP No Determination Possible SS Calibrated against a single substance SV Surrogate recovery outside performance criteria. This may be due to a matrix effect. W Results expressed on as received basis. + AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page. ++ Result outside calibration range, results should be considered as indicative only and are not accredited. * Analysis subcontracted to an Exova Jones Environmental approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample Tip Blank Sample OC Outside Calibration Range	DR	Dilution required.
NAD No Asbestos Detected. ND None Detected (usually refers to VOC and/SVOC TICs). NDP No Determination Possible SS Calibrated against a single substance SV Surrogate recovery outside performance criteria. This may be due to a matrix effect. W Results expressed on as received basis. + AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page. ++ Result outside calibration range, results should be considered as indicative only and are not accredited. * Analysis subcontracted to an Exova Jones Environmental approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample Tip Blank Sample OC Outside Calibration Range	М	MCERTS accredited.
ND None Detected (usually refers to VOC and/SVOC TICs). NDP No Determination Possible SS Calibrated against a single substance SV Surrogate recovery outside performance criteria. This may be due to a matrix effect. W Results expressed on as received basis. + AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page. ++ Result outside calibration range, results should be considered as indicative only and are not accredited. * Analysis subcontracted to an Exova Jones Environmental approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample Trip Blank Sample OC Outside Calibration Range	NA	Not applicable
NDP No Determination Possible SS Calibrated against a single substance SV Surrogate recovery outside performance criteria. This may be due to a matrix effect. W Results expressed on as received basis. + AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page. ++ Result outside calibration range, results should be considered as indicative only and are not accredited. * Analysis subcontracted to an Exova Jones Environmental approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample Trip Blank Sample OC Outside Calibration Range	NAD	No Asbestos Detected.
SS Calibrated against a single substance SV Surrogate recovery outside performance criteria. This may be due to a matrix effect. W Results expressed on as received basis. + AQC failure, accreditation has been removed from this result, if appropriate, see "Note" on previous page. ++ Result outside calibration range, results should be considered as indicative only and are not accredited. * Analysis subcontracted to an Exova Jones Environmental approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample TB Trip Blank Sample OC Outside Calibration Range	ND	None Detected (usually refers to VOC and/SVOC TICs).
SV Surrogate recovery outside performance criteria. This may be due to a matrix effect. W Results expressed on as received basis. + AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page. ++ Result outside calibration range, results should be considered as indicative only and are not accredited. * Analysis subcontracted to an Exova Jones Environmental approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample TB Trip Blank Sample OC Outside Calibration Range	NDP	No Determination Possible
W Results expressed on as received basis. + AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page. ++ Result outside calibration range, results should be considered as indicative only and are not accredited. * Analysis subcontracted to an Exova Jones Environmental approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample Tip Blank Sample OC Outside Calibration Range	SS	Calibrated against a single substance
+ AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page. ++ Result outside calibration range, results should be considered as indicative only and are not accredited. * Analysis subcontracted to an Exova Jones Environmental approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample TB Trip Blank Sample OC Outside Calibration Range	SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
++ Result outside calibration range, results should be considered as indicative only and are not accredited. * Analysis subcontracted to an Exova Jones Environmental approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample TB Trip Blank Sample OC Outside Calibration Range	W	Results expressed on as received basis.
* Analysis subcontracted to an Exova Jones Environmental approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample TB Trip Blank Sample OC Outside Calibration Range	+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
AD Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample TB Trip Blank Sample OC Outside Calibration Range	++	Result outside calibration range, results should be considered as indicative only and are not accredited.
CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample TB Trip Blank Sample OC Outside Calibration Range	*	Analysis subcontracted to an Exova Jones Environmental approved laboratory.
LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample TB Trip Blank Sample OC Outside Calibration Range	AD	Samples are dried at 35°C ±5°C
ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample TB Trip Blank Sample OC Outside Calibration Range	СО	Suspected carry over
NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample TB Trip Blank Sample OC Outside Calibration Range	LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
BS AQC Sample LB Blank Sample N Client Sample TB Trip Blank Sample OC Outside Calibration Range	ME	Matrix Effect
LB Blank Sample N Client Sample TB Trip Blank Sample OC Outside Calibration Range	NFD	No Fibres Detected
N Client Sample TB Trip Blank Sample OC Outside Calibration Range	BS	AQC Sample
TB Trip Blank Sample OC Outside Calibration Range	LB	Blank Sample
OC Outside Calibration Range	N	Client Sample
	ТВ	Trip Blank Sample
AA x2 Dilution	ОС	Outside Calibration Range
	AA	x2 Dilution
AB x10 Dilution	AB	x10 Dilution

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
ТМО	Not available	PM0	No preparation is required.				
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465 and BS1377.	PM0	No preparation is required.				
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM16/PM30	Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE/Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	Yes
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes	Yes	AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM12/PM16/PM30	please refer to PM16/PM30 and PM12 for method details	Yes			
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details			AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details	Yes		AR	Yes
PM13	A visual examination of the solid sample is carried out to ascertain sample make up, colour and any other inclusions. This is not a geotechnical description.	PM0	No preparation is required.			AR	
TM15	Modified USEPA 8260. Quantitative Determination of Volatile Organic Compounds (VOCs) by Headspace GC-MS.	PM10	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.				

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM15	Modified USEPA 8260. Quantitative Determination of Volatile Organic Compounds (VOCs) by Headspace GC-MS.	PM10	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes			
TM15	Modified USEPA 8260. Quantitative Determination of Volatile Organic Compounds (VOCs) by Headspace GC-MS.	PM10	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM15	Modified USEPA 8260. Quantitative Determination of Volatile Organic Compounds (VOCs) by Headspace GC-MS.	PM10	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM15	Modified USEPA 8260. Quantitative Determination of Volatile Organic Compounds (VOCs) by Headspace GC-MS.	PM10	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes	Yes	AR	Yes
TM16	Modified USEPA 8270. Quantitative determination of Semi-Volatile Organic compounds (SVOCs) by GC-MS.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				
TM16	Modified USEPA 8270. Quantitative determination of Semi-Volatile Organic compounds (SVOCs) by GC-MS.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.	Yes			
TM16	Modified USEPA 8270. Quantitative determination of Semi-Volatile Organic compounds (SVOCs) by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM16	Modified USEPA 8270. Quantitative determination of Semi-Volatile Organic compounds (SVOCs) by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes	Yes	AR	Yes
TM21	Modified BS 7755-3:1995, ISO10694:1995 Determination of Total Organic Carbon or Total Carbon by combustion in an Eltra TOC furnace/analyser in the presence of oxygen. The CO2 generated is quantified using infra-red detection. Organic Matter (SOM) calculated as per EA MCERTS Chemical Testing of Soil, March 2012 v4.	PM24	Dried and ground solid samples are washed with hydrochloric acid, then rinsed with deionised water to remove the mineral carbon before TOC analysis.			AD	Yes
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM14	Analysis of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for dissolved metals and acidified if required.				

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM14	Analysis of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for dissolved metals and acidified if required.	Yes			
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.			AD	Yes
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.	Yes	Yes	AD	Yes
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM62	Acid digestion of as received solid samples using Aqua Regia refluxed at 112.5 °C.			AR	Yes
TM31	Modified USEPA 8015B. Determination of Methyltertbutylether, Benzene, Toluene, Ethylbenzene and Xylene by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes			
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes			
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes	Yes	AR	Yes
TM37	Modified methods USEPA 160.2, EN872:2005 and SMWW 2540D. Gravimetric determination of Total Suspended Solids. Sample is filtered through a 1.5um pore size glass fibre filter and the resulting residue is dried and weighed.	PM0	No preparation is required.	Yes			

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods 325.2 (Chloride), 375.4 (Sulphate), 365.2 (o-Phosphate), 353.1 (TON), 354.1 (Nitrite), 350.1 (NH4+), 7196A (Hex Cr)	PM0	No preparation is required.				
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods 325.2 (Chloride), 375.4 (Sulphate), 365.2 (o-Phosphate), 353.1 (TON), 354.1 (Nitrite), 350.1 (NH4+), 7196A (Hex Cr)	PM0	No preparation is required.	Yes			
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods 325.2 (Chloride), 375.4 (Sulphate), 365.2 (o-Phosphate), 353.1 (TON), 354.1 (Nitrite), 350.1 (NH4+), 7196A (Hex Cr)	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.			AD	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods 325.2 (Chloride), 375.4 (Sulphate), 365.2 (o-Phosphate), 353.1 (TON), 354.1 (Nitrite), 350.1 (NH4+), 7196A (Hex Cr)	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes	Yes	AD	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods 325.2 (Chloride), 375.4 (Sulphate), 365.2 (o-Phosphate), 353.1 (TON), 354.1 (Nitrite), 350.1 (NH4+), 7196A (Hex Cr)	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.			AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods 325.2 (Chloride), 375.4 (Sulphate), 365.2 (o-Phosphate), 353.1 (TON), 354.1 (Nitrite), 350.1 (NH4+), 7196A (Hex Cr)	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods 325.2 (Chloride), 375.4 (Sulphate), 365.2 (o-Phosphate), 353.1 (TON), 354.1 (Nitrite), 350.1 (NH4+), 7196A (Hex Cr)	PM60	As received solid samples are extracted with deionised water in a 2:1 ratio of water to solid.			AR	Yes
TM48	Determination of Ferrous Iron by reaction with Sodium Carbonate and Morfamquat Sulphate which is analysed spectrophotometrically.	PM0	No preparation is required.				
TM50	Acid soluble sulphate (Total Sulphate) analysed by ICP-OES	PM29	Dried and ground solid sample is boiled with dilute hydrochloric acid, the resulting liquor is then analysed.	Yes	Yes	AD	Yes
TM50	Acid soluble sulphate (Total Sulphate) analysed by ICP-OES	PM29	Dried and ground solid sample is boiled with dilute hydrochloric acid, the resulting liquor is then analysed.			AR	Yes

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM60	TC/TOC analysis of Waters by High Temperature Combustion followed by NDIR detection. Based on the following modified standard methods: USEPA 9060, APHA Standard Methods for Examination of Water and Wastewater 5310B, ASTM D 7573, and USEPA 415.1.	PM0	No preparation is required.	Yes			
TM65	Asbestos Bulk Identification method based on HSG 248.	PM42	Solid samples undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.	Yes		AR	
TM73	Modified US EPA methods 150.1 and 9045D and BS1377:1990. Determination of pH by Metrohm automated probe analyser.	PM0	No preparation is required.	Yes			
TM73	Modified US EPA methods 150.1 and 9045D and BS1377:1990. Determination of pH by Metrohm automated probe analyser.	PM11	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.	Yes	Yes	AR	No
TM74	Analysis of water soluble boron (20:1 extract) by ICP-OES.	PM32	Hot water soluble boron is extracted from dried and ground samples using a 20:1 ratio.	Yes	Yes	AD	Yes
TM74	Analysis of water soluble boron (20:1 extract) by ICP-OES.	PM61	As received solid samples are extracted with hot water in a 20:1 ratio of water to soil ready for analysis by ICP.			AR	Yes
TM75	Modified US EPA method 310.1. Determination of Alkalinity by Metrohm automated titration analyser.	PM0	No preparation is required.	Yes			
TM107	Determination of Sulphide/Thiocyanate by Skalar Continuous Flow Analyser	PM119	As received solid samples are extracted with 1M NaOH by orbital shaker for Sulphide and Thiocyanate analysis.			AR	Yes
TM131	Quantification of Asbestos Fibres and ACM, based on HSG248 and SCA method.	PM42	Solid samples undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.	Yes		AR	Yes
TM173	Analysis of fluoride by ISE (Ion Selective Electrode) using modified ISE method 340.2	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.			AR	Yes

Exova Jones Environmental Method Code Appendix

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
NONE	No Method Code	NONE	No Method Code				
NONE	No Method Code	NONE	No Method Code			AR	Yes
TM15_A	Modified USEPA 8260. Quantitative Determination of Volatile Organic Compounds, Vinyl Chloride & Styrene by Headspace GC-MS.	PM10	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes

Appendix E Gas and Groundwater Monitoring Results

		Ground Water Monitoring 11/05/18													
Hole ID	Depth to base (m)	Depth to water (m)	Height of well casing from ground level (m)	рН	Temperature (°C)	Specific Conductivity (µS/cm)	RDO concentration (mg/L)	ORP (mV)							
WS01	2.57	2.16	0.35	-	-	-	-	-							
WS02	1.46	1.37	1.57	-	-	-	-	-							
WS03	3.8	1.4	0.29	8.92	10.08	3247.9	0.05	-42							
WS04	1.88	0.99	0.37	8.97	11.48	5176.8	0.02	-16.1							
WS05	4.38	1	0.28	8.63	10.97	3124.5	0.16	-66.9							
WS06	3.75	1.59	0.25	9.07	10.83	1359.6	0.05	-110.2							
WS07	3.74	1.83	0.44	9.29	11.5	1302.9	1.18	-70.6							
WS08	4.55	3.86	0.4	-	-	-	-	-							
BH01	14.82	3.97	0.28	9.17	11.62	751.68	2.32	107.3							
BH02	15.26	2.87	0.42	8.46	17.55	424.14	2.22	37.9							
BH03	28.91	2.75	0.3	9.11	12.86	692.92	0.35	-36.9							
BH04	>30	1.56	-	-	-	-	-	-							
BH05	17.91	2.04	-	-	-	-	-	-							
BH06	>30	2.33	0.45	-	-	-	-	-							

Gas monitoring 11/05/18

Hole ID	Pressure (mb)	Peak Flow (L/hr)	Steady Flow(L/hr)	CO ₂ peak (%)	CO ₂ stable (%)	O ₂ minium (%)	O ₂ stable (%)	CH ₄ peak (%)	CH ₄ stable (%)
WS01	1011	0	0	1	0.7	19.6	19.6	0	0
WS02	1012	0	0	0.4	0.1	20.1	20.2	0	0
WS03	1012	0	0	0.1	0.1	20.5	20.5	0	0
WS04	1012	0	0	0.2	0.2	20.2	20.4	0	0
WS05	1012	0	0	0	0	20.7	20.7	0	0
WS06	1017	0	0	0.1	0.1	20.6	20.7	0	0
WS07	1016	0.4	0.2	0.4	0.2	20.6	20.9	0	0
WS08	1017	4.8	0	0.7	0.5	20.4	20.6	0	0
BH01	1012	0	0	0.4	0.2	20.1	20.3	0	0
BH02	1012	0	0	0.2	0.2	20.5	20.5	0	0
BH03	*	*	*	*	*	*	*	*	*
BH04	1017	0	0	0.1	0.1	20.7	20.7	0	0
BH05	1017	0	0	0.4	0.1	20.1	20.5	0	0
BH06	1017	0	0	0.1	0.1	20.6	20.9	0	0

Pressure in the morning 1011, peaking at 1017 with the last recording of 1016 taken at the end of the day. Measurements taken from top of well casing.

Well BH04 and 06 were too deep for the interface probe (30m)
Gas readings for BH03 absent due to gas tap being off
Gas tap dropped down well side of WS08
Water samples from WS06 were very silty and the hole began to run dry during sampling

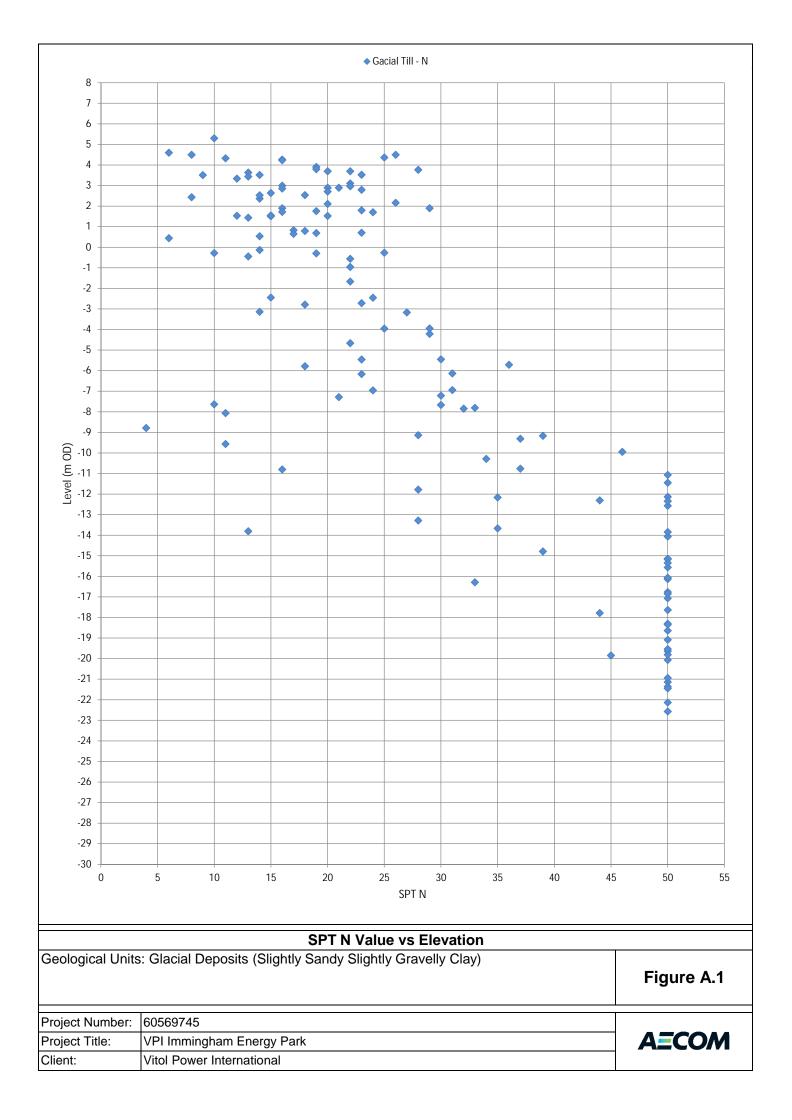
WS07 ran dry before sampling could take palce Duplicate water sample of BH03 collected

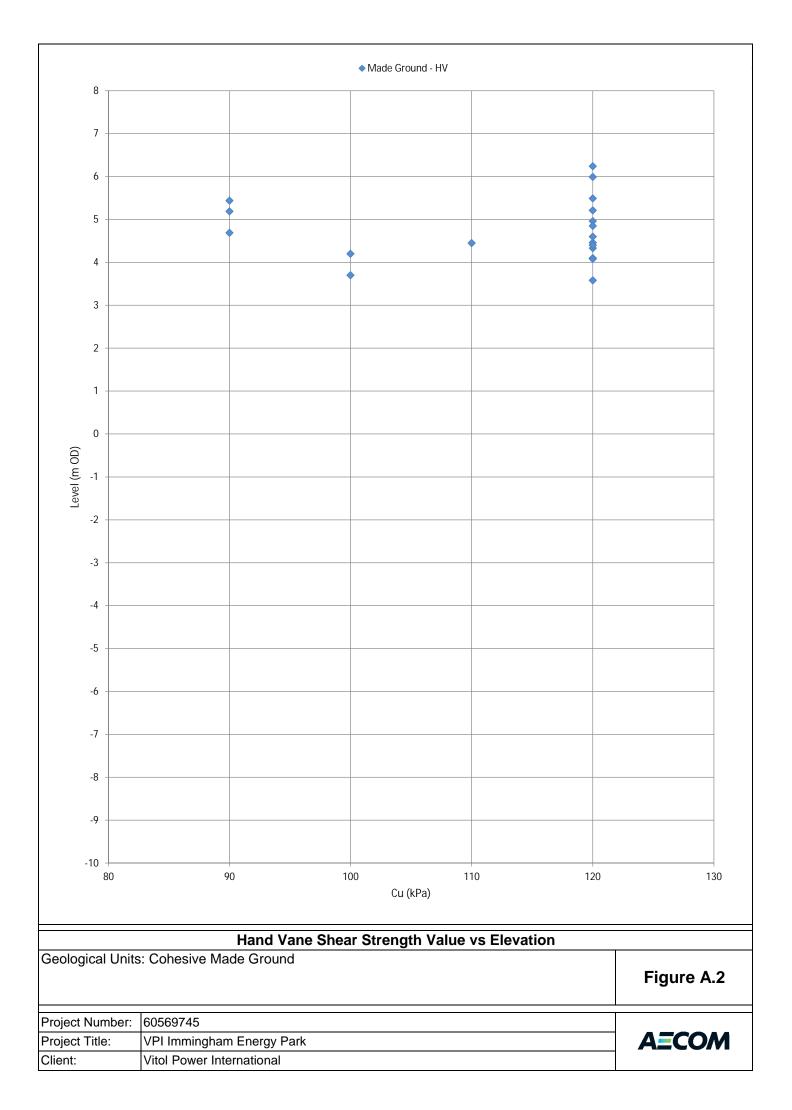
	1		1								
	Ground Wa	ter Monitoring 23/05/18				Gas mo	nitoring 23/05/	′18			
Hole ID	Depth to water (m)	Depth to base (m)	Pressure (mb)	Peak Flow (L/hr)	Steady Flow(L/hr)	CO ₂ peak (%)	CO ₂ stable (%)	O ₂ minium (%)	O ₂ stable (%)	CH ₄ peak (%)	CH ₄ stable (%)
WS01	2.085	2.475	1025	0	0	0.1	0.1	20.3	20.3	0	0
WS02	1.32	1.465	1026	-17	0	3.9	0.1	14.4	20.3	0	0
WS03	1.525	3.72	1025	7.3	0	0.3	0.2	20.3	20.3	0	0
WS04	0.96	1.7	1026	0	0	0.1	0.1	20.3	20.3	0	0
WS05	0.98	4.165	1026	0	0	0.1	0.1	20.3	20.3	0	0
WS06	1.61	3.62	1025	0	0	0.2	0.1	20.3	20.4	0	0
WS07	1.835	3.61	1025	0	0	0.4	0.1	20.2	20.3	0	0
WS08	3.485	4.5	1026	4.8	0	0.2	0	20.4	20.4	0	0
BH01	3.705	14.265	1026	5.3	0	0.6	0.4	19.8	19.9	0	0
BH02	2.66	15.13	1025	0	0	0.1	0.1	20.4	20.4	0	0
BH03	2.57	28.84	1026	0	0	0.8	0.1	20.3	20.4	0	0
BH04	1.31	35.03	1025	0	0	0.1	0.1	20.3	20.3	0	0
BH05	1.865	17.795	1026	0	0	0.2	0.1	20.3	20.3	0	0
BH06	2.195	35.03	1025	0	0	0.1	0.1	20.4	20.4	0	0

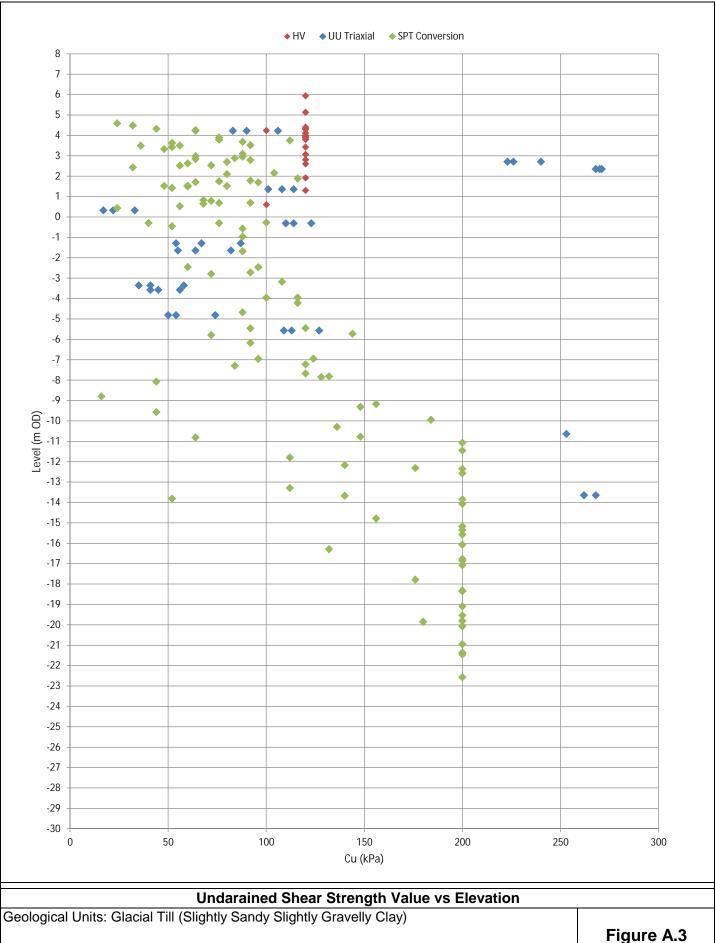
Note:

Pressure in the morning 1026, peaking at 1026 with the last recording of 1026 taken at the end of the day. Measurements taken from top of well casing.

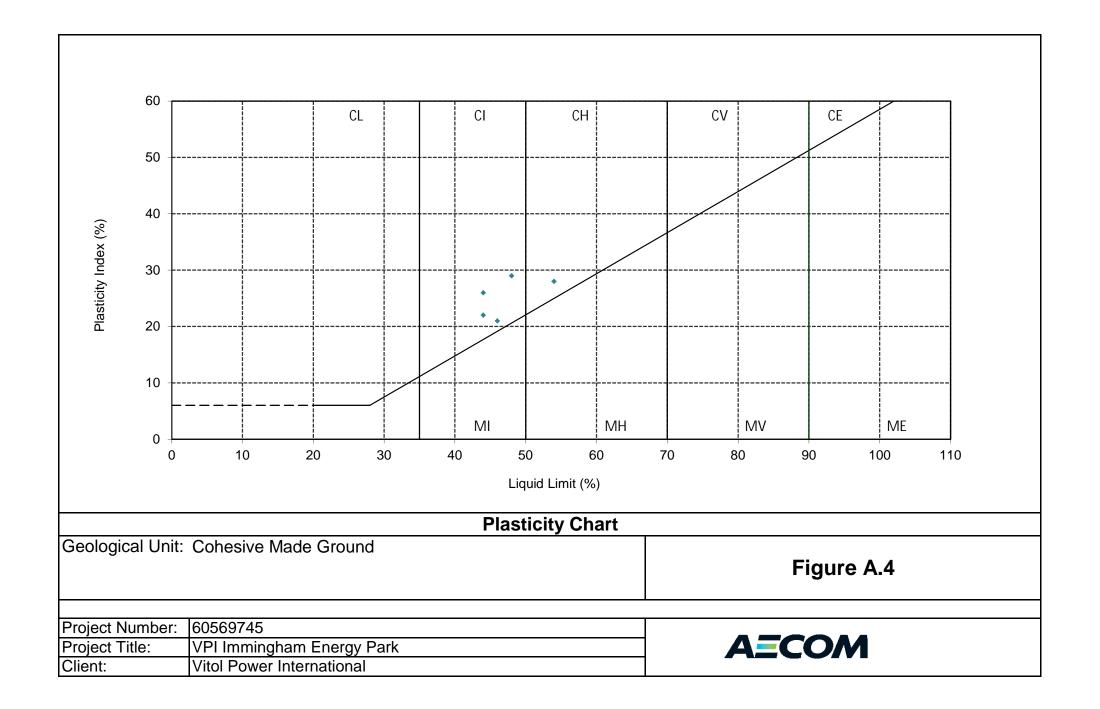
Gas readings from WS02 fluctuated a lot, up and down by approximately 6% for a while before it stabilsed New gas tap placed on WS08

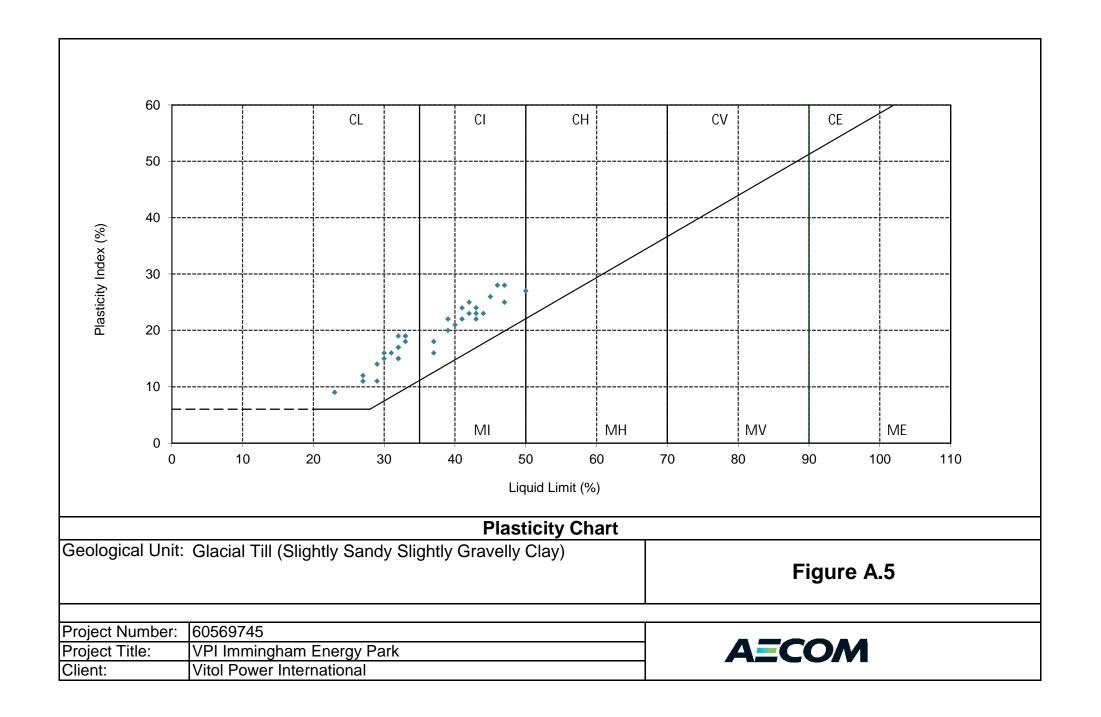

	Ground Water Moni	toring 01/06/18	Gas monitoring 01/06/18												
Hole ID	Depth to water (m)	Depth to base (m)	Pressure (mb)	Peak Flow (L/hr)	Steady Flow(L/hr)	CO ₂ peak (%)	CO ₂ stable (%)	O ₂ minium (%)	O ₂ stable (%)	CH ₄ peak (%)	CH ₄ stable (%)				
WS01	2.11	2.491	1018	0	0	0.5	0.2	20.2	20.4	0	0				
WS02	1.367	1.451	1018	0	0	1.3	0.1	19.4	20.6	0	0				
WS03	1.482	3.703	1018	5.4	0	0.3	0.3	20.4	20.6	0	0				
WS04	0.967	1.676	1018	0	0	0.1	0.1	20.6	20.6	0	0				
WS05	1.03	4.417	1017	0	0	0.1	0.1	20.4	20.4	0	0				
WS06	1.64	3.622	1017	0	0	0.1	0.1	20.7	20.7	0	0				
WS07	1.866	3.599	1017	0	0	0.1	0.1	20.7	20.8	0	0				
WS08	3.332	4.5	1016	1.3	0	0.5	0	20.7	20.8	0	0				
BH01	3.783	14.285	1018	-1	0	0.7	0.5	19.9	20	0	0				
BH02	2.775	15.182	1017	0	0	0.1	0.1	20.6	20.7	0	0				
BH03	2.656	28.915	1017	6	0	0.1	0.1	20.4	20.7	0	0				
BH04	1.438	35.033	1016	0	0	0.1	0	20.7	20.8	0	0				
BH05	1.955	17.838	1016	0	0	0	0	20.7	20.7	0	0				
BH06	2.271	34.99	1017	0	0	0.1	0.1	20.7	20.8	0	0				

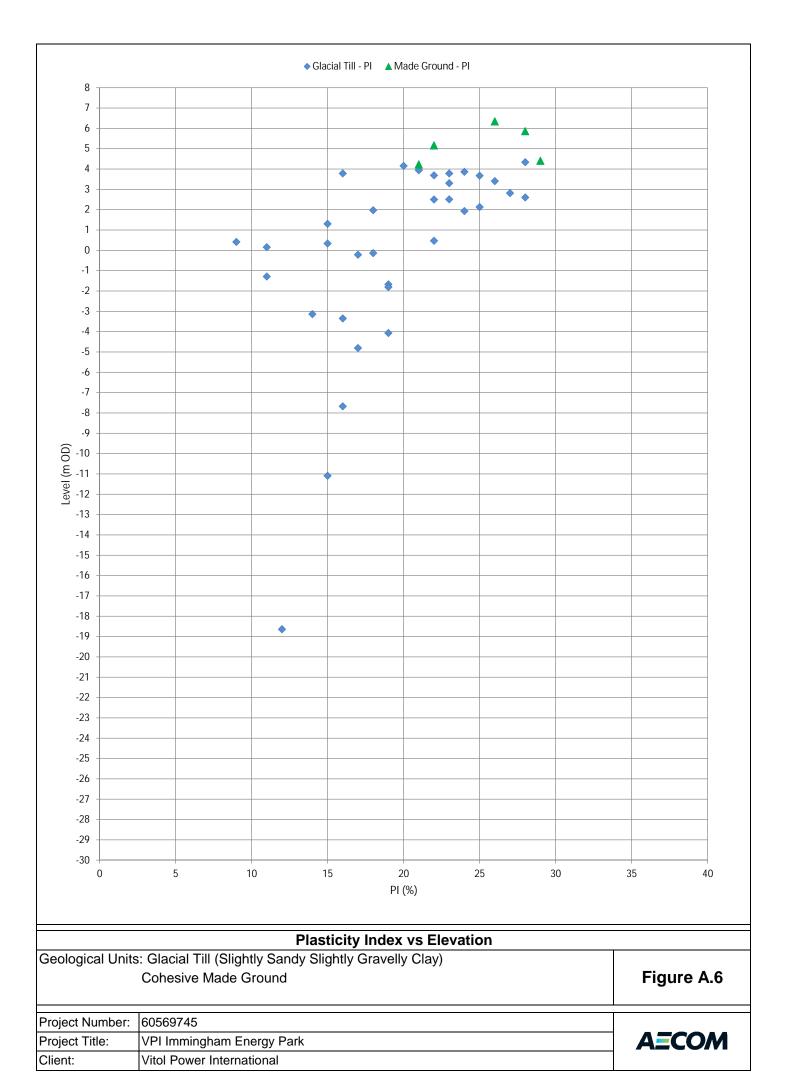

Note:

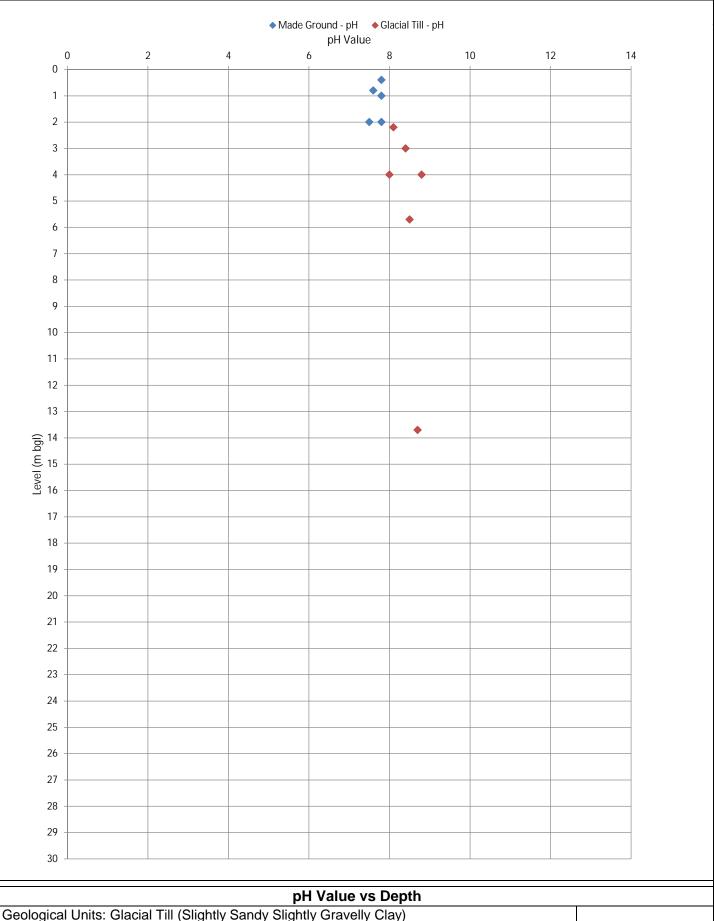

Pressure in the morning 1018, peaking at 1026 with the last recording of 1016 taken at the end of the day. Measurements taken from top of well casing.

Appendix F Parametric Study Charts

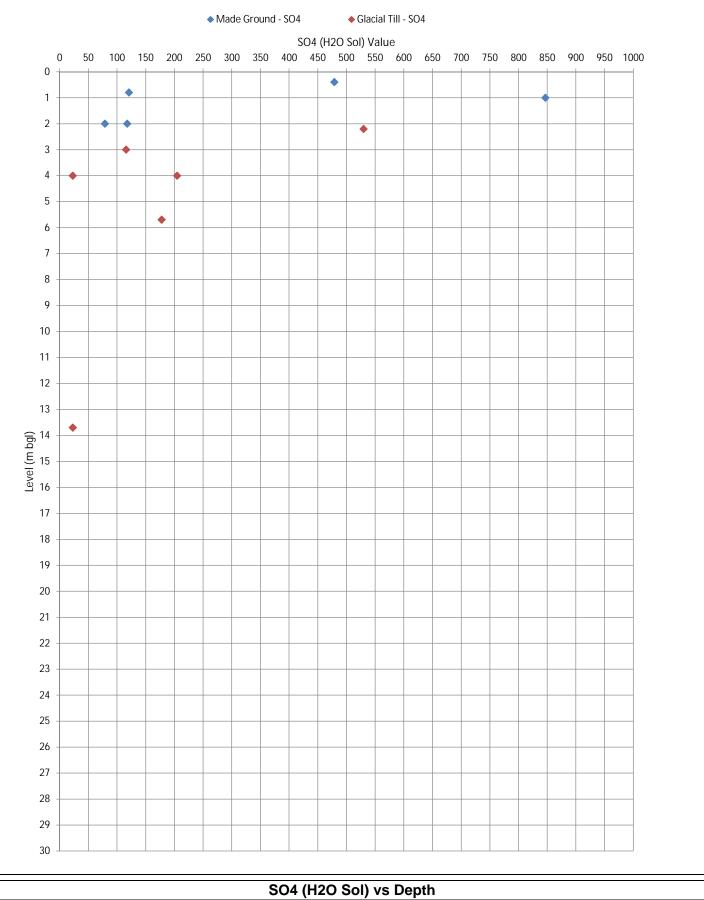

- A.1 SPT N Value vs Elevation for Glacial Deposits
- A.2 Hand Vane Shear Strength Value vs Elevation for Made Ground
- A.3 Undrained Shear Strength Value vs Elevation for Glacial Deposits
- A.4 Plasticity Chart for Made Ground
- A.5 Plasticity Chart for Glacial Deposits
- A.6 Plasticity Index value vs Elevation for Glacial Deposits
- A.7 Plasticity Index value vs Elevation for Made Ground
- A.8 pH Value vs Depth for Superficial Materials (MG and GT)
- A.9 SO4 (H2O Sol) vs Depth for Superficial Materials (MG and GT)
- A.10 SO4 (Acid Sol) vs Depth for Superficial Materials (MG and GT)
- A.11 Total Sulfur (%) vs Depth for Superficial Materials (MG and GT)

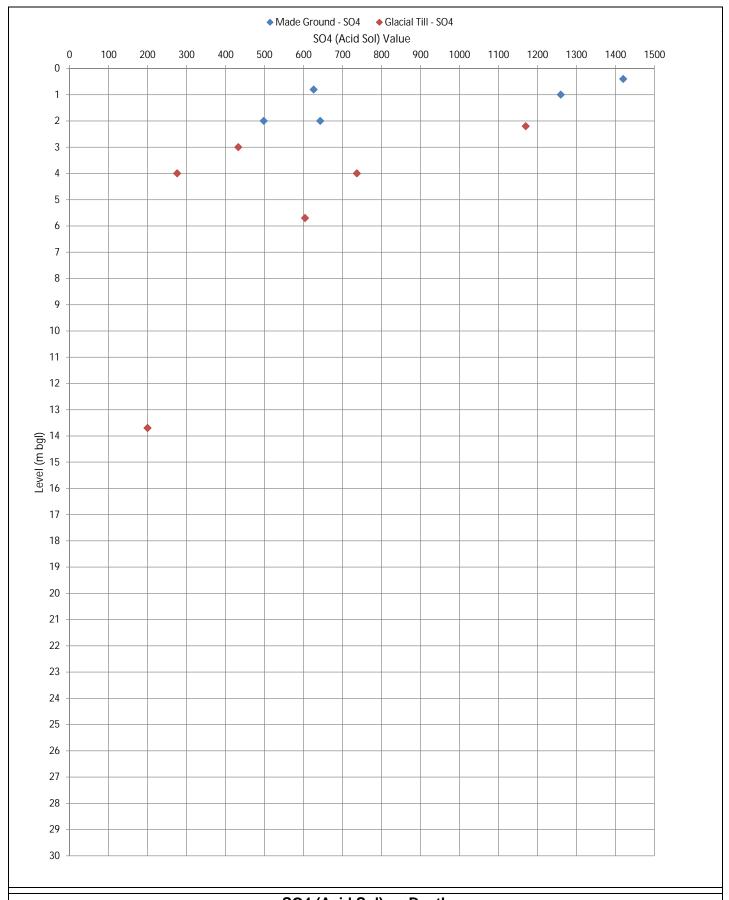


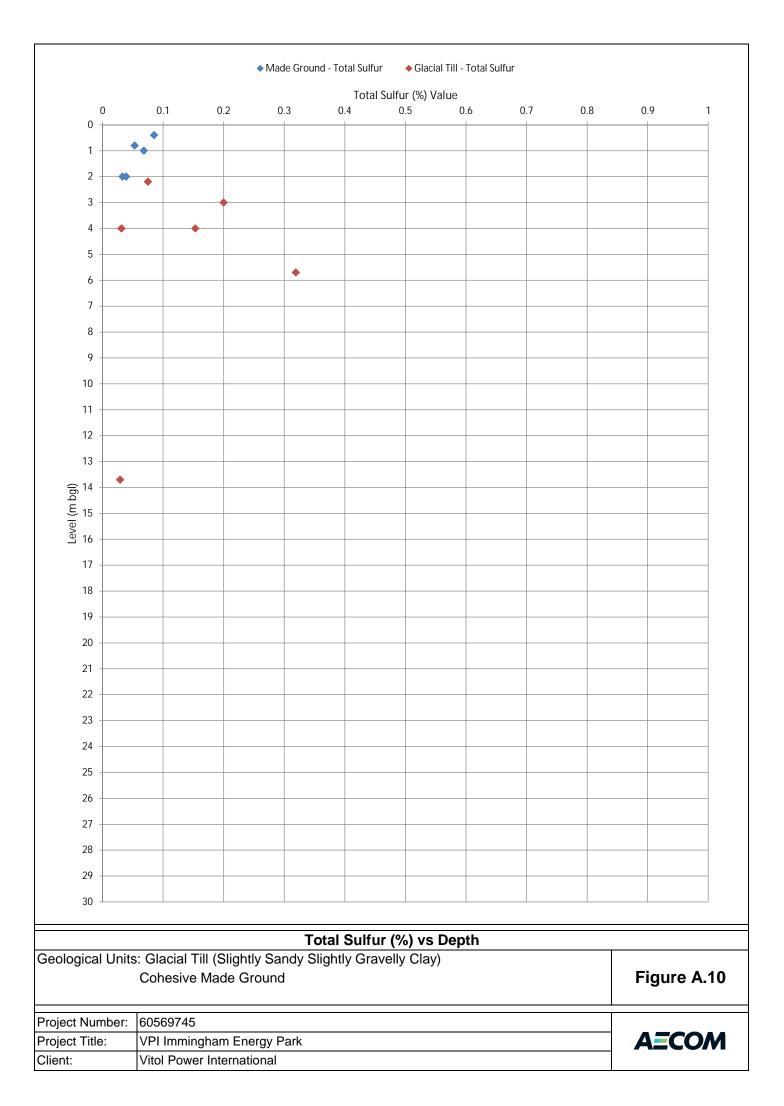




	Undarained Shear Strength Value vs Elevation	
Geological Units	s: Glacial Till (Slightly Sandy Slightly Gravelly Clay)	Figure A.3
Project Number:	60569745	
Project Title:	VPI Immingham Energy Park	AECOM
Client:	Vitol Power International	






	pH value vs Depth	
Geological Units	s: Glacial Till (Slightly Sandy Slightly Gravelly Clay)	
	Cohesive Made Ground	Figure A.7
Project Number:	60569745	
Project Title:	VPI Immingham Energy Park	AECOM
Client:	Vitol Power International	

	SO4 (H2O Sol) vs Depth	
Geological Units	s: Glacial Till (Slightly Sandy Slightly Gravelly Clay) Cohesive Made Ground	Figure A.8
Project Number:	60569745	
Project Title:	VPI Immingham Energy Park	A=COM
Client:	Vitol Power International	

	SO4 (Acid Sol) vs Depth	
Geological Units	s: Glacial Till (Slightly Sandy Slightly Gravelly Clay) Cohesive Made Ground	Figure A.9
Project Number:	60569745	
Project Title:	VPI Immingham Energy Park	A=COM
Client:	Vitol Power International	

Appendix G Contamination Assessments

Human Health Soils Risk Assessment

Analyte	Human Health GAC	Controlle Drinking Water Standard	d waters GAC Coastal Environmental Quality Standard	I.D. Depth (m) Date	BH01 0.575 05/04/2018	0.8 11/04/2018		BH04 0.85		0.55 05/04/2018 1	TP01 0.8		TP04 0.9 10/04/2018	TP05 0.6 10/04/2018			TP08 0.35				0.85		WS01 1.125 06/04/2018 10			WS04 0.5 06/04/2018	WS05 0.75	0.6 11/04/2018 11/	WS07 0.55	WS08 0.6 11/04/2018
VOC 1,1,1,2-tetrachloroethane	120*18	0.00205*10		Dute	<0.005	<0.005	-	-	<0.005	-	<0.005	<0.005	-	-	<0.005	-		-	-	-	-		<0.005	<0.005	<0.005	-	<0.005	-	-	-
1,1,2,2-tetrachloroethane 1,1-dichloropropene	260*18	0.0000865***			0.263 <0.003	<0.003 <0.003	-		<0.003 <0.003		<0.003	<0.003 <0.003	-		<0.003	-	-		-			-	<0.003 <0.003	<0.003 <0.003	<0.003 <0.003	•	<0.003 <0.003			-
1,2,3-trichloropropane 1,2,4-trimethylbenzene	0.11 ^{#11} 46.6 ^{#12}	7.61E-7 ^{#10} 0.794 ^{#10}			<0.004 0.315 <0.004	<0.004 0.091 <0.004	-	-	<0.004		<0.004 0.606 <0.004			-	<0.004 <0.006 <0.004	-	-	-	-	-	-	-	0.111	<0.004	<0.004 <0.006 <0.004	-	<0.004 <0.006 <0.004	===	=	==
1,2-dibromo-3-chloropropane 1,2-dichloroethane 1,2-Dichloroethene	0.064*11 0.42*18	0.000749 ^{F3} 0.000729 ^{F1} 0.0208 ^{F3}	0.00243 ^{RE}		<0.004 <0.005 <0.01	<0.004 <0.005 0.005	-	-	<0.004 <0.005 0.005		<0.005	<0.005		-	<0.004	-	-	-	-	-	-	-	< 0.005	<0.004 <0.005 0.005	<0.005	-	<0.004 <0.005 0.005	====	=	===
1,2-dichloropropane 1,3,5-trimethylbenzene	2.65*19 1.500*11	0.0225#3 0.448#10			<0.004 0.02	<0.004 <0.003	-	-	<0.004 <0.003	-	< 0.004	<0.004 0.051	-	-	<0.004	-	-	-	-	-	-	-	<0.004 <0.003	<0.004 <0.003	<0.004 <0.003	-	<0.004 <0.003	=+	-	=
1,3-dichloropropane 2,2-dichloropropane	23.000**1	0.216*10			<0.004 <0.004	<0.004 <0.004	-		<0.004 <0.004	-	<0.004	<0.004 <0.004	-		<0.004	-	-		-			-		<0.004 <0.004	<0.004		<0.004			-
Bromochloromethane Bromodichloromethane Bromoform	630 ^{#11} 1.3 ^{#11} 720 ^{#12}	0.028*10 0.0392*1 0.0392*1			<0.004 <0.004 <0.004	<0.004 <0.004 <0.004	-	-	<0.004	-	<0.004 <0.004 <0.004		-	-	<0.004 <0.004 <0.004	-	-	-	-	-	-	-	< 0.004	<0.004 <0.004 <0.004	<0.004 <0.004 <0.004	-	<0.004 <0.004 <0.004			
Chlorodibromomethane cis-1,3-dichloropropene	730 ^{#12} 39 ^{#11}	0.0392*1			<0.005 <0.004	<0.005 <0.004	-		<0.005 <0.004	-	<0.005	<0.005 <0.004	-	-	<0.005		-	-	-	-	-	-	<0.005 <0.004	<0.005	<0.005 <0.004	-	<0.005 <0.004			==
Cyclohexane, 1,1,3-trimethyl- Cyclohexane, ethyl- Dibromomethane	411	410			<0.004	<0.004	-	-	-	-	- 0.004	4.705 2.325 <0.004		-	<0.004	-	-	-	-	-	-	-	<0.004	-	-	-	-	===	===	-
Dodecane, 2,6,10-trimethyl- Hexachlorobutadiene	99 ^{#11}	0.00365 ^{#10}	0.0658**7		<0.004	<0.004	-	-	<0.004	-	2.465 <0.004		-	-	<0.004	-	-	-	-	-	-	-	1.528	<0.004	<0.004	-	<0.004	====	=	===
Isopropylbenzene Naphthalene, decahydro-2-methyl-	1.540*19	5.2*10			0.024 0.876	<0.003	-	-	<0.003		<0.003 292 - 2.269	<0.003 1.088	-	-	<0.003	-	-	-	-	-	-	-	<0.003	<0.003	<0.003	-	<0.003		-	-
n-butylbenzene n-propylbenzene p-isopropyltoluene	58,000 ^{#11} 4.530 ^{#12}	35.5 ^{#10} 8.16 ^{#10}			<0.004 0.056 0.092	<0.004 <0.004 <0.004	-	-	<0.004	-	0.063 <0.004 0.075	<0.004 <0.004 1.185	-	-	<0.004	-	-	-	-	-	-	-	<0.004	<0.004 <0.004	<0.004	-	<0.004 <0.004	====	=	===
sec-butylbenzene Styrene	120.000 ^{#11} 3,550 ^{#19}	126 ^{#10} 0.0657 ^{#3}	0.164#13		0.203 <0.003	<0.004 <0.004 <0.003	-	-	<0.004	-	0.073	<0.004 <0.003	-	-	<0.004	-	-	-	-	-		-	<0.004 <0.003	<0.004	<0.004	-	<0.004	====	=	
tert-butylbenzene trans-1,3-dichloropropene	120.000*11	18.6#10			<0.005 <0.003	<0.005 <0.003	-	-	<0.005 <0.003	-	<0.005 <0.003	<0.005 <0.003	-	-	<0.005 <0.003	-	-	-	-	-	-	-	<0.005 <0.003	<0.005 <0.003	<0.005 <0.003	-	<0.005 <0.003			
trans-Decalin, 2-methyl- Trihalomethanes Chlorinated Hydrocarbons		0.0392*1			<0.018	0.009	-	-	0.009	- 0.	<0.018	0.246 - 2.398 <0.018		-	<0.018	-	-	-	-	-	-	-	<0.018	0.009	0.009	-	0.009	===	=	===
1,1,1-trichloroethane	640 ^{#18} 89.7 ^{#19}	2.8 ⁸³ 0.000312 ⁸¹⁰	0.14 ^{#13} 0.334 ^{#13}		<0.005 <0.004	<0.005 <0.004	-	-	<0.005 <0.004	-	<0.005 <0.004	<0.005 <0.004	-	-	<0.005	-	-	-	-	-	-	-	<0.005 <0.004	<0.005 <0.004	<0.005 <0.004	-	<0.005 <0.004	===	=	==
1,1-dichloroethane 1,1-dichloroethene	208 ^{#19} 22.6 ^{#19}	0.00115 ^{#10} 0.11 ^{#3}			<0.006 <0.006	<0.006 <0.006	-		<0.006 <0.006	-	<0.006 <0.006	< 0.006	-	-	<0.006 <0.006	-	-	-	-	-	-	-	< 0.006	<0.006 <0.006	<0.006 <0.006	-	<0.006 <0.006		-	
Carbon tetrachloride Chloroethane Chloroform	3 ^{#18} 640 ^{#19} 81 ^{#18}	0.0077 ^{#1} 5.89 ^{#10} 0.0392 ^{#1}	0.0308 ^{Ad}		<0.004 <0.006 <0.005	<0.004 <0.006	-	-	<0.004 <0.006		<0.004 <0.006			-	<0.004 <0.006 <0.005	-	-	-	-	-		-		<0.004 <0.006	<0.004 <0.006	-	<0.004 <0.006		==	
Chloromethane cis-1.2-dichloroethene	0.573 ^{#19}	0.0271 ^{#10} 0.0208 ^{#3}			<0.003 <0.007	0.005 <0.007	-	-	<0.003 <0.007	-	<0.003 <0.007	<0.003 <0.007	-	-	<0.003	-	-	-	-	-	-	-	<0.003 <0.007	<0.003 <0.007	<0.003 <0.007	-	<0.003 <0.007	==	==	===
Dichloromethane PCE+TCE+DCE+VC	162#19	0.00371#3	0.00371 ⁸⁸		<0.03 <0.026	<0.03 0.013 0.004	-	-	<0.03 0.013 0.004	- 7	0.078 <0.026	0.041 <0.026	=	-	<0.03 <0.026 <0.008	-		-						<0.03 0.013 0.004	<0.03 0.013 0.004		<0.03 0.013 0.004	===	=	当
Sum of PCE and TCE TCE+DCE+VC Tetrachloroethene	19*18		0.0277#8		<0.008 <0.023 <0.003	0.004 0.0115 <0.003	-	-	0.004 0.0115 <0.003		<0.008 <0.023 <0.003	<0.008 <0.023 <0.003	-	-	<0.008 <0.023 <0.003	-	-	-	-	-	-	-		0.004 0.0115 <0.003	0.004 0.0115 <0.003	-	0.004 0.0115 <0.003	===	=	\equiv
trans-1,2-dichloroethene Trichloroethene	18.9*19 1.2*18 0.04*18	0.0208*3	0.0277 0.0148 ⁸⁸		<0.003 <0.005	<0.003 <0.005	-	-	<0.003 <0.005	-	<0.003 <0.005		-	-	<0.003 <0.005	-	-	-	-	-	-	-	<0.003 <0.005	<0.003 <0.005	<0.003 <0.005	-	<0.003 <0.005		-	
Vinyl chloride Halogenated Benzenes 1,2,3-trichlorobenzene	0.04*18 110*18	0.000148 ⁸¹			<0.002	<0.002	-	-	<0.002		<0.002	<0.002	-	-	<0.002	-	-	-	-		-	-	<0.002	<0.002	<0.002 <0.007		<0.002	=	=	=
1,2,3-trichlorobenzene 1,2,4-trichlorobenzene 1,2-dichlorobenzene	240*18	0.00257 ⁸¹ 0.0023 ⁸¹ 6.96 ⁸³			<0.007 <0.007 <0.004	<0.007 <0.007 <0.004	-		<0.007 <0.004		<0.007 <0.004	<0.007 <0.007 <0.01 - 0.926			<0.007 <0.004	Ė			-			-		<0.007 <0.004	<0.007 <0.004		<0.007 <0.004	==	==	=
1,3-dichlorobenzene 1,4-dichlorobenzene	2.200 ^{#18} 34 ^{#18} 4.800 ^{#18}	2.14*3			<0.004 <0.004	<0.004 <0.004 <0.004	-	-	<0.004 <0.004		<0.004	<0.004 <0.004	-	-	<0.004	-	-	-	-	-	-	-	< 0.004	<0.004	<0.004 <0.004	-	<0.004 <0.004		-	
2-chlorotoluene 4-chlorotoluene Bromobenzene	23.000*11 23.000*11 105*19	1.79 ^{#10} 2.43 ^{#10} 0.208 ^{#10}			<0.003 <0.003	<0.003 <0.003	-	-	<0.003 <0.003	-	<0.003	<0.003 <0.003	-	-	<0.003 <0.003 <0.002	-	-	-	-	-		-	<0.003 <0.003	<0.003 <0.003	<0.003 <0.003	-	<0.003 <0.003	====	=	
Chlorobenzene Hexachlorobenzene	59*18 110*18	0.769#3 0.0339#1	0.0169**7		<0.004 - 1.372 <0.1	<0.002 <0.004 <0.1	-	-	<0.004		<0.004	<0.004		-	<0.004	-	-	-	-	-			<0.004	<0.004	<0.004		<0.002 <0.004 <0.01	===	=	
Trichlorobenzene (total) Halogenated Hydrocarbons					<0.014	0.007	-	-	0.007	-	<0.014	<0.014	-	-	<0.014	-	-	-	-	-	-	-	<0.014	0.007	0.007	-	0.007		=	
1,2-dibromoethane Bromomethane Dichlorodifluoromethane	0.16 ^{#11} 30 ^{#11} 370 ^{#11}	0.000193*3 0.00132*10			<0.003 <0.001 <0.002	<0.003 <0.001 <0.002	-	-	<0.003 <0.001	-	<0.003 <0.001 <0.002	<0.003 <0.001	-	-	<0.003 <0.001 <0.002	-	-	-	-	-	-	-	<0.003 <0.001	<0.003 <0.001	<0.003 <0.001	-	<0.003 <0.001	====	=	
Trichlorofluoromethane PAH	350.000"11	0.436 ^{#10} 4.1 ^{#10}			<0.003	<0.003	-	-	<0.002	-	<0.003	<0.002	-	-	<0.003	-	-	-	-	-	-	-	<0.002	<0.003	<0.003	-	<0.003			
Acenaphthene Acenaphthylene	90.000*18 90.000*18	0.423 ^{#17} 0.328 ^{#17}			<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	-	-	<0.01		<0.01	1.651 <0.01 1.072	-	-	<0.01 <0.01 0.05	-	-	-	-	-		-	<0.1	<0.01 <0.01 <0.01	<0.01 <0.01 0.046		<0.01 <0.01 0.041		==	
Anthracene Benz(a)anthracene Benzo(a) pyrene	530,000*18 170*18 36*18	5.06 ^{#17} 2.72 ^{#17} 0.0129 ^{#1}	0.00563 ^{RE}		<0.1 <0.1	<0.1 <0.1	-	-	<0.01 <0.01 <0.01	-	0.662	1.52		-	0.072	-	-	-	-	-	-	-	<0.1 <0.1 <0.1	<0.01	0.089	-	0.056	====	=	===
Benzo(b)&(k)fluoranthene Benzo(b)fluoranthene	45*18	5.0125	0.0178*7		<0.1 <0.1	<0.1 <0.1	-	-	<0.01 <0.01	-	0.796 0.573	1.19 0.857	-	-	0.158 0.114	-	-	-	-	-	-	-	<0.1	<0.01	0.18 0.13	-	0.159 0.114			
Benzo(g,h,i)perylene benzo(g,h,i)perylene + indeno(1,2,3-cd)pyrene	4.000*18		0.00342 #7		<0.1 <0.2 <0.1	<0.1 0.1 <0.1	-	-	<0.01 0.01	-	0.581 0.818 0.223	0.854	-	-	0.105 0.145 0.044	-	-	-	-	-	-	-	<0.1 <0.2 <0.1	<0.01 0.01	0.114 0.151 0.05	-	0.104 0.151 0.045	====	=	
Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene	1,200 ^{#18} 350 ^{#18} 3,6 ^{#18}	3.85 ^{#17} 0.13 ^{#17}	0.0251**7		<0.1 <0.1	<0.1 <0.1	-	-	<0.01	-	2.415	3.179 0.346	-	-	0.258	-	-	-	-	-		-	<0.1	<0.01	0.318	-	0.288	====	==	
Fluoranthene Fluorene	23.000*18 66.000*18	0.728 ^{#3} 0.339 ^{#17}	0.00115 ⁸⁶		<0.1 <0.1	<0.1 <0.1	-	-	<0.01 <0.01	-	<0.01	1.569 2.305	-	-	0.023 <0.01	-	-	-	-	-	-	-	<0.1 <0.1	<0.01 <0.01	0.026 <0.01	-	0.029 <0.01		-	-
Indeno(1,2,3-c,d)pyrene Naphthalene PAHs (sum of 4)	510*18 220*18	0.039#17	0.013 ^{#8}		<0.1 <0.027 <0.4	<0.1 <0.027 0.2	-	-	<0.01 <0.01 0.02	- 0.0	0.237 066 - 0.601	0.263 0.252 - 1.36 2.044		-	0.04 <0.01 0.303	-	-	-	-	-		-	<0.1 <0.027 <0.4	<0.01 <0.01 0.02	0.037 <0.01 0.331		0.047 <0.01 0.31	====	=	
Phenanthrene Pyrene	22.000*18 54.000*18	0.22 ⁸¹⁷ 1.46 ⁸¹⁷			<0.1 <0.1	<0.1 2.817	-	-	<0.01 <0.01	-	1.872	7.6	-	-	0.11	-	-	-	-	-	-	-	<0.1	<0.01	0.13	-	0.124			==
Phenolics 2,4-dimethylphenol	20,000*19	0.961#10			<0.1	<0.1 <0.1	-	-	<0.01	-	<0.01	<0.01	-	-	<0.01	-	-	-	-	-	-	-	<0.1	<0.01	<0.01	-	<0.01	===	==	
2-chloronaphthalene 2-methylphenol 2-nitrophenol	460*19 41.000*11	15.7°10 1.55°10			<0.1 <0.1	<0.1 <0.1 <0.1	-	-	<0.01 <0.01	-	<0.01 <0.01	<0.01 <0.01	-	-	<0.01	-	-	-	-	-	-	-	<0.1	<0.01	<0.01 <0.01	-	<0.01 <0.01	====	=	===
4-chloro-3-methylphenol 4-methylphenol	82.000*11 82.000*11	3.02#10			<0.1 <0.1	<0.1 <0.1	-	-	<0.01 <0.01		<0.01 <0.01	<0.01 <0.01	-	:	<0.01	-	-		-	-	÷	-	<0.1 <0.1	<0.01 <0.01	<0.01 <0.01		<0.01 <0.01		-	
4-nitrophenol Phenol Halogenated Phenols	620*18	1.91*10	0.00253 ^{sec}		<0.1 <0.1	<0.1 <0.1	-	-	<0.01	-	<0.01	<0.01 <0.01		-	<0.01	-	-	-	-	-	-	-	<0.1	<0.01	<0.01	-	<0.01	===	=	===
2,4,5-trichlorophenol 2,4,6-trichlorophenol	82.000*11 210*11	21.4 ^{#10} 0.612 ^{#3}			<0.1 <0.1	<0.1 <0.1	-	-	<0.01 <0.01	-	<0.01 <0.01	<0.01 <0.01	-	-	<0.01 <0.01	-	-	-	-	-	-	-	<0.1 <0.1	<0.01 <0.01	<0.01 <0.01	-	<0.01 <0.01	===		==
2.4-dichlorophenol 2-chlorophenol	2.500 ^{#11} 5.800 ^{#11}	0.0668 ^{#10} 0.35 ^{#10}	0.00061 ^{se} 0.192 ^{#13}		<0.1 <0.1	<0.1 <0.1	-	-	<0.01	- :	<0.01	<0.01 <0.01		-	<0.01	-	-		-	-	- :	-	<0.1 <0.1	<0.01	<0.01	- :	<0.01		===	
Pentachlorophenol Phthalates Bis(2-ethylhexyl) phthalate	400 ⁶¹⁸ 85,800 ⁶¹⁹	0.0476 ⁸³	0.00212 ⁸⁸		<1	<1	-		<0.1		1.926	<0.01 3.119		-	<0.1			-	-			-	<1	<0.1	<0.1		<0.1	=	#	=
Butyl benzyl phthalate Di-n-butyl phthalate	944.000 ^{#19} 15,400 ^{#19}	0.306 ^{#10} 15.7 ^{#10} 148 ^{#10}	0.0143 ^{#6}		<1	<1	-	-	<0.1 <0.1		<0.1	<0.1 <0.1		-	<0.1	-	-	-		-			<1	<0.1	<0.1 <0.1		<0.1 <0.1	=	=	
Di-n-octyl phthalate Diethylphthalate Dimethyl phthalate	89.100 ^{#19} 182,000 ^{#19}	148 ^{#10} 21.8 ^{#10}	14.8 ^{#13} 0.291 ^{#13} 0.599 ^{#13}		<1 <1 <1	<1 <1 <1	-	-	<0.1 <0.1 <0.1		<0.1 <0.1 <0.1	<0.1 <0.1 <0.1		-	<0.1 <0.1 <0.1	-		-	-		-	-	<1 <1 <1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1		<0.1 <0.1 <0.1	===	-	\equiv
TICS 2-Bromododecane (TIC)						-	-	-	-		3.906	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		=	
Octane, 3-methyl- 288246-53-7						-	-	-	-	-	2.246	1.413 2.517 12.91	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	====	=	===
Heptacosane TPH >C5-C6 Aliphatics	3.300*18	161 ^{#2}			<0.1	<0.1			<0.1		<0.1	<0.1			<0.1	Ė							<0.1	<0.1	<0.1		<0.1	_	#	#
>C6-C8 Aliphatics >C8-C10 Aliphatics	9.200 ^{#18} 2.500 ^{#18}	621 ^{#2} 92.1 ^{#2}			<0.1	<0.1 <0.1	-	-	<0.1 <0.1	-	<0.1	1.3 5.6	-	-	<0.1	-	-	-	-	-	-	-	0.2 1.1	<0.1	<0.1 <0.1	-	<0.1 <0.1		-	
>C10-C12 Aliphatics >C12-C16 Aliphatics >C16-C21 Aliphatics	12.000 ^{e18} 66.000 ^{e18}	722 ⁸² 16.100 ⁸² 1.890.000 ⁸²			588.8 1,627 2,885	23.2 251 858	-	-	<0.2 <4	-	154.5 789 1,715	325.9 925 1,534		-	<0.2 <4 <7	-	-	-	-	-		-	51.8 343 977	<0.2 9 26	9.7 101 367		4.9 52 256	====	=	
>C16-C35 Aliphatics >C21-C35 Aliphatics	1,600,000*18	22.800.000*2			8,057 5,172	2,985 2,127	-		7 <7	-	5,129	4,535 3,001	-	-	<14 <7		-	-	-	-	-	-	3,500 2.523	108 82	1,243 876	-	931 675			==
>C5-C35 Aliphatics >EC5-EC7 Aromatics	23,000*18	0.000731 ^{#1} 1.47 ^{#2}	0.00584 ⁸⁶		10,274 <0.1	3,259 <0.1	-	-	<19 <0.1	-	<0.1	5,793 <0.1	-	-	<19 <0.1	-	-	-	-	-	-	-	<0.1	117 <0.1	<0.1	-	988 <0.1			-
>EC7-EC8 Aromatics >EC8-EC10 Aromatics >EC10-EC12 Aromatics	58.000*18 4,300*18 19.000*18	1.47° 4.78°2 2.27°2	0.155 ^{NS}		<0.1 <0.1 92.9	<0.1 <0.1 <0.2	-	-	<0.1 <0.1 <0.2		<0.1 <0.1 33.9	<0.1 <0.1 103.8		-	<0.1 <0.1 <0.2	-	-	-	-	-	-	-	<0.1 <0.1 10.3	<0.1 <0.1 <0.2	<0.1 <0.1 <0.2	-	<0.1 <0.1 <0.2	===	=	
>EC12-EC16 Aromatics >EC16-EC21 Aromatics	37,000*18 28,000*18	4.51 ^{#2} 12.7 ^{#2}			809 3,404	<4 <7	-	-	<4 <7	-	358 1,663	688 1,953	-	-	<4 <7	-	-		-	-		-	104 629	<4 17	37 357	-	32 322	===	=	
>EC21-EC35 Aromatics >EC5-EC35 Aromatics	28.000 ^{#18}	113 ⁸²			8,205 12,511	40 40	-	-	<7 <19	-	5,036 7,091	5,372 8,117	-	-	<7 <19	-	-	-	-	-	-	-		175	2,184	-	1,581	===	==	==
>C5-C35 Aliphatics & Aromatics TPH Hazard Indicies BTEX	1				22,785 0	3,299 0	-	-	<38 0		0	13,910 0	-	-	<38 0	-	-	-	-	-	-	-		0	3,538 0	-	2,923	===	==	===
Benzene Toluene	24*18 58.000*18	0.000731 ^{#1} 1.47 ^{#3}	0.00584 ⁸⁸ 0.155 ⁸⁶		0.046 0.007	0.028 0.006	-	-	<0.005 <0.003	-	0.005	0.06 - 0.868 0.019	-	-	<0.005 <0.003	-	-	-	-	-	-	-	0.047 0.015	<0.005 <0.003	<0.005 <0.003	-	<0.005 <0.003	===	==	==
Ethylbenzene Xylene (m & p)	6.200#18	1.36*3	0.0905#13		0.06 0.114	0.024 0.078	-	-	<0.003 <0.004	-	0.039	0.121 0.115	-	-	<0.003 <0.004	-	-	-	-			-	0.031	<0.003 <0.004			<0.003 <0.004		=	
Xylene Total Xylene (o) Total BTEX	6.400 ^{#18} 7.200 ^{#18}	2.29 ⁸³ 0.82 ⁸¹⁰	0.138**3		0.15 0.036 0.263	0.101 0.023 0.159	-	-	0.004 <0.004 0.0095	-		0.169 0.054 1.177	-	-	<0.008 <0.004 <0.019	-		-	-	-	-	-	0.12 0.031 0.213	< 0.004	0.011 <0.004 0.0165	-	0.004 <0.004 0.0095		-	
Oxygenates MTBE	5.740#19	0.686*17	0.0991#14		<0.006	<0.006	-	-	<0.006	-	<0.006	<0.006		-	<0.006	-	-	-	-				<0.006	<0.006	<0.006		<0.006		=	\equiv
SVOC 2-methylnaphthalene 4-bromophenyl phenyl ether	3,000#11	0.789#10			1.998 <0.1	1.136 <0.1	-	-	<0.01 <0.01		2.857 <0.01	4.537 <0.01	-	-	<0.01	-	-	-	-	-		-	<0.1	0.127	0.053	-	0.044	==	=	==
4-bromophenyl phenyl ether Azobenzene	26*11	0.0024#10			<0.1 <0.1	<0.1 <0.1 <0.1	-	-	<0.01 <0.01 <0.01		<0.01 <0.01			_ :	<0.01 <0.01	-	-	-	-	_:	_:			<0.01	<0.01 <0.01	_:	<0.01 <0.01 <0.01	==	=	=
																														_

Numb er of Result	Number of Detects	Minimum Concentra tion	Minimum Detect	Maximum Concentr ation	Maximum Detect	Average Concentra tion			Number of Guideline	Number of Guideline Exceedances
10	0	<0.005	ND	<0.005	ND	0.005		0	10	0
10 10	0	<0.003	0.263 ND	<0.003	0.263 ND	0.029	0.003	0.082	10 0	0
10	0	<0.004 <0.006	ND 0.091	<0.004 0.833	ND 0.833	0.004	0.004 0.0485	0	10	0
10	0	<0.004 <0.005	ND ND	<0.004 <0.005	ND ND	0.004	0.004 0.005	0	10 10	0
10	5	0.005	0.005	<0.01	0.005	0.0075	0.0075	0.0026	0	0
10 10	3	<0.004 <0.003	ND 0.02	<0.004 0.051	ND 0.051	0.004	0.004	0.019	0	0
10 10	0	<0.004	ND ND	<0.004	ND ND	0.004	0.004	0	0	0
10 10	0	<0.004	ND ND	<0.004	ND ND	0.004	0.004 0.004	0	0	0
10	0	< 0.004	ND	< 0.004	ND	0.004	0.004	0	0	0
10 10	0	<0.005 <0.004	ND ND	<0.005 <0.004	ND ND	0.005	0.005	0	0	0
1	1	4.705	4.705	4.705	4.705 2.325		4.705 2.325		0	0
10	0	<0.004	ND 1.528	< 0.004	ND 7 253	0.004	0.004		10	0
10	0	1.528 <0.004	ND	<0.004	ND	0.004	2.465 0.004	3.1 0	0	0
10 3	3	<0.003 0.292	0.024	2.269	0.024 2.269	1.1	0.003 1.088	0.0066	0	0
10	1	<0.004	0.063	0.063	0.063 0.056	0.0099	0.004	0.019 0.016	0	0
10	3	< 0.004	0.075	1.185	1.185	0.14	0.004	0.37	0	0
10	0	<0.004	0.05 ND	<0.003	0.203 ND	0.029	0.004	0.063	0	0
10	0	<0.005	ND ND	<0.005 <0.003	ND ND	0.005	0.005	0	0	0
2	2	0.246	0.246	2.398	2.398		1.01275		0	0
0	j5	0.009	0.009	<0.018	0.009	0.014		0.0047	U	ĮŪ.
0	0	<0.005 <0.004	ND ND	<0.005	ND ND	0.005	0.005	0	10	0
10	0	< 0.006	ND	<0.006	ND	0.006	0.006		10	0
10	0	<0.006 <0.004	ND ND	<0.006 <0.004	ND ND	0.006	0.006 0.004	0	0	0
0	0	<0.006 <0.005	ND ND	<0.006	ND ND	0.006	0.006 0.005	0	0 10	0
0	1 0	<0.003	0.005 ND	0.005	0.005 ND	0.0032	0.003	0.00063	0	0
0	2	<0.03	0.041	0.078	0.078	0.036	0.03	0 0.015	10	2
10	5	0.013	0.013	<0.026	0.013 0.004	0.02	0.0195 0.006		0	0
0	5	0.0115	0.0115 ND	<0.023	0.0115	0.017	0.01725	0.0061	0	0
0	0	<0.003 <0.003	ND	<0.003 <0.003	ND ND	0.003	0.003 0.003	0	0	0
0	0	<0.005 <0.002	ND ND	<0.005 <0.002	ND ND	0.005	0.005 0.002	0	0 10	0
0	0	<0.007	IND	<0.002	IND	0.007	0.007		10	In .
10	0	<0.007	ND	<0.007	ND	0.007	0.007	0	10	0
10	0	<0.004	ND ND	0.926 <0.004	0.926 ND	0.05	0.004	0.15	0	0
10	0	<0.004	ND ND	<0.004	ND ND	0.004	0.004	0	0	0
10	0	< 0.003	ND	< 0.003	ND	0.003	0.003	0	0	0
10	1	<0.002 <0.004	ND ND	<0.002	ND 1.372	0.002	0.002	0.22	1	0
10	0	<0.01	ND 0.007	<0.1	ND 0.007	0.037	0.01	0.043	3	0
								0.0037		U
10	0	<0.003	ND ND	<0.003	ND ND	0.003	0.003	0	10	0
10	0	<0.002	ND ND	< 0.002	ND ND	0.002	0.002	0	0	0
	lo .									
	0		1.651 ND		1.651 ND	0.2	0.01		0	0
10 10	5	<0.01 <0.01	0.041	1.072	1.072 1.52	0.21	0.075 0.0945	0.35 0.48	10 0	5
10	5	<0.01	0.089	1.089	1.089	0.26	0.1	0.4	10	5
10	5	<0.01 <0.01	0.158	1.19 0.857	1.19 0.857	0.28	0.129	0.39	8	5
10	5	< 0.01	0.104	0.591	0.591	0.18	0.102	0.22	10	5
10 10 10	5 8 5	<0.01 0.01 <0.01	0.01 0.044	0.854 0.333	0.854 0.333	0.26 0.1	0.102 0.151 0.075	0.22 0.31 0.1	10 0 8	5 0 5
10 10 10	5 8 5 5 5	<0.01 0.01	0.01	0.854	0.854	0.26	0.102 0.151	0.22	10 0	5 0 5 0 2
10 10 10 10 10	5 8 5 5 5 4	<0.01 0.01 <0.01 <0.01 <0.01 <0.01	0.01 0.044 0.258 0.038 0.023	0.854 0.333 3.179 0.346 1.569	0.854 0.333 3.179 0.346 1.569	0.26 0.1 0.68 0.1 0.2	0.102 0.151 0.075 0.179 0.075 0.0275	0.22 0.31 0.1 1.1 0.11 0.48	10 0 8	5 0 5 0 2 4
10 10 10 10 10 10	5 8 5 5 5 4 1	<0.01 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	0.01 0.044 0.258 0.038 0.023 2.305 0.037	0.854 0.333 3.179 0.346 1.569 2.305 0.263	0.854 0.333 3.179 0.346 1.569 2.305 0.263	0.26 0.1 0.68 0.1 0.2 0.27 0.094	0.102 0.151 0.075 0.179 0.075 0.0275 0.01 0.0735	0.22 0.31 0.1 1.1 0.11 0.48 0.72 0.089	10 0 8 0 2	5 0 5 0 2 4 1
10 10 10 10 10 10 10	5 5 4 1 5 2	<0.01 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	0.01 0.044 0.258 0.038 0.023 2.305	0.854 0.333 3.179 0.346 1.569 2.305 0.263 1.36 2.044	0.854 0.333 3.179 0.346 1.569 2.305 0.263 1.36 2.044	0.26 0.1 0.68 0.1 0.2 0.27	0.102 0.151 0.075 0.179 0.075 0.0275 0.0275 0.01 0.0735 0.0185	0.22 0.31 0.1 1.1 0.11 0.48 0.72	10 0 8 0 2 10	5 0 5 0 2 2 4 1 1 0 2 0
10 10 10 10 10 10 10 10	5 5 4 1 5 2 8 5	<0.01 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	0.01 0.044 0.258 0.038 0.023 2.305 0.037 0.066 0.02 0.11	0.854 0.333 3.179 0.346 1.569 2.305 0.263 1.36 2.044 7.6	0.854 0.333 3.179 0.346 1.569 2.305 0.263 1.36 2.044 7.6	0.26 0.1 0.68 0.1 0.2 0.27 0.094 0.13	0.102 0.151 0.075 0.179 0.075 0.0275 0.0275 0.01 0.0735 0.0185	0.22 0.31 0.1 1.1 0.11 0.48 0.72 0.089 0.26 0.69 2.4	10 0 8 0 2 10 1 0 5	5 0 5 0 2 4 1 1 0 2 0 2 2
10 10 10 10 10 10 10 10 10 10	5 4 1 5 2 8 5 6	<0.01 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.	0.01 0.044 0.258 0.038 0.023 2.305 0.037 0.066 0.02 0.11 0.091	0.854 0.333 3.179 0.346 1.569 2.305 0.263 1.36 2.044 7.6 4.18	0.854 0.333 3.179 0.346 1.569 2.305 0.263 1.36 2.044 7.6 4.18	0.26 0.1 0.68 0.1 0.2 0.27 0.094 0.13 0.56 1	0.102 0.151 0.075 0.179 0.075 0.0275 0.0275 0.010 0.0735 0.0185 0.3205 0.105	0.22 0.31 0.1 1.1 0.11 0.48 0.72 0.089 0.26 0.69 2.4	10 0 8 0 2 10 1 0 5	5 0 5 0 2 2 4 4 1 1 0 2 0 2 2 3
10 10 10 10 10 10 10 10 10 10	5 4 1 5 2 8 5 6	<pre><0.01 0.01 0.01 <0.01 re>	0.01 0.044 0.258 0.038 0.023 2.305 0.037 0.066 0.02 0.11 0.091	0.854 0.333 3.179 0.346 1.569 2.305 0.263 1.36 2.044 7.6 4.18	0.854 0.333 3.179 0.346 1.569 2.305 0.263 1.36 2.044 7.6 4.18	0.26 0.1 0.68 0.1 0.2 0.27 0.094 0.13 0.56 1 1 0.037 0.037	0.102 0.151 0.075 0.179 0.075 0.179 0.075 0.01 0.0075 0.01 0.00735 0.01 0.0185 0.3205 0.105 0.105 0.105	0.22 0.31 0.1 1.1 0.48 0.72 0.089 0.26 0.69 2.4 1.5 0.043 0.043	10 0 8 0 2 2 10 1 1 0 5 0 0 2 3 3	5 0 0 2 2 4 1 1 0 2 2 3
10 10 10 10 10 10 10 10 10 10	5 4 1 5 2 8 5 6	<pre><0.01 0.01 0.01 <0.01 re>	0.01 0.044 0.258 0.038 0.023 2.305 0.037 0.066 0.02 0.11 0.091	0.854 0.333 3.179 0.346 1.569 2.305 0.263 1.36 2.044 7.6 4.18	0.854 0.333 3.179 0.346 1.569 2.305 0.263 1.36 2.044 7.6 4.18	0.26 0.1 0.68 0.1 0.2 0.27 0.094 0.13 0.56 1	0.102 0.151 0.075 0.179 0.075 0.075 0.0275 0.01 0.0275 0.01 0.0735 0.0185 0.3205 0.105 0.105 0.105	0.22 0.31 0.1 1.1 0.11 0.14 0.72 0.089 0.26 0.69 2.4 1.5	10 0 8 0 2 10 1 0 5 0 2 3	2 3
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 5 4 1 1 5 2 8 5 6 0 0 0	<pre><0.01 0.01 <0.01 <0</pre>	0.01 0.044 0.258 0.038 0.023 2.305 0.037 0.066 0.02 0.11 0.091 ND ND ND ND ND	0.854 0.333 3.179 0.346 1.569 2.305 0.263 1.36 2.044 7.6 4.18 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	0.854 0.333 3.179 0.346 1.569 2.305 0.263 1.36 2.044 7.6 4.18 ND ND ND ND	0.26 0.1 0.68 0.1 0.2 0.27 0.094 0.13 0.56 1 1 0.037 0.037 0.037 0.037 0.037 0.037	0.102 0.151 0.075 0.179 0.075 0.179 0.0275 0.0275 0.0185 0.3205 0.105 0.105 0.105 0.105 0.105 0.105 0.01 0.01	0.22 0.31 0.1 1.1 0.48 0.72 0.089 0.26 0.69 2.4 1.5 0.043 0.043 0.043 0.043	10 0 8 0 2 10 1 0 5 0 0 2 3 3	2 3 0 0
100 100 100 100 100 100 100 100 100 100	5 5 4 1 1 5 2 2 8 5 6 6 0 0 0 0 0 0 0 0	<0.01 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	0.01 0.044 0.258 0.038 0.038 0.032 2.305 0.037 0.066 0.02 0.11 ND ND ND ND ND ND ND ND ND ND ND ND ND	0.854 0.333 3.179 0.346 1.569 2.305 0.263 1.36 2.044 7.6 4.18 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	0.854 0.333 3.179 0.346 1.569 2.305 0.263 1.36 2.044 7.6 4.18 ND ND ND ND ND ND ND ND ND ND ND ND ND	0.26 0.1 0.68 0.1 0.2 0.27 0.094 0.13 0.56 1 1 1 0.037 0.037 0.037 0.037 0.037 0.037	0.102 0.151 0.075 0.179 0.075 0.179 0.0275 0.001 0.01 0.0735 0.0185 0.3205 0.105 0.105 0.01 0.01 0.01 0.01 0.01	0.22 0.31 0.1 1.1 0.48 0.72 0.089 0.26 0.69 2.4 1.5 0.043 0.043 0.043 0.043 0.043 0.043	10 0 0 8 0 2 10 11 0 5 0 0 2 3 3	2 3 0 0 0 0 0 0 0
100 100 100 100 100 100 100 100 100 100	5 5 5 4 1 1 5 2 8 5 6	<0.01 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	0.01 0.044 0.258 0.038 0.023 0.037 0.023 2.305 0.037 0.066 0.02 0.11 0.091 ND ND ND ND ND ND ND ND ND ND ND ND ND	0.854 0.333 3.179 0.346 1.569 2.305 0.263 1.36 2.044 7.6 4.18 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	0.854 0.333 3.179 0.346 1.569 2.305 0.263 1.36 2.044 7.6 4.18 ND ND ND ND ND ND ND	0.26 0.1 0.68 0.1 0.2 0.27 0.094 0.13 0.56 1 1 0.037 0.037 0.037 0.037 0.037	0.102 0.151 0.075 0.075 0.075 0.075 0.0275 0.007 0.01 0.0735 0.01 0.0135 0.105 0.105 0.105 0.105 0.101 0.01 0.0	0.22 0.31 0.1 1.1 0.11 0.41 0.72 0.099 0.26 0.69 2.4 1.5 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043	10 0 8 8 0 2 10 11 0 5 5 0 2 2 3	2 3 0 0 0 0 0 0
100 100 100 100 100 100 100 100 100 100	5 5 4 1 1 5 2 2 8 8 5 6 0 0 0 0 0 0 0 0 0	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	0.01 0.044 0.258 0.038 0.038 0.023 2.305 0.037 0.066 0.02 0.11 ND ND ND ND ND ND ND ND ND ND ND ND ND	0.854 0.333 3.179 0.346 1.569 2.305 0.263 1.36 2.044 7.6 4.18 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	0.854 0.854 0.333 3.179 0.346 1.569 0.246 1.166 2.2044 7.5 4.418 ND ND ND ND ND ND ND ND ND ND ND ND ND	0.26 0.1 0.68 0.1 0.2 0.27 0.094 0.13 0.56 1 1 0.037 0.037 0.037 0.037 0.037 0.037	0.102 0.151 0.075 0.075 0.0775 0.0275 0.0275 0.0275 0.0275 0.0275 0.0276 0.01 0.0735 0.0205 0.0105 0	0.22 0.31 0.1 1.1 0.11 0.48 0.072 0.089 0.26 0.69 2.4 1.5 0.043 0.043 0.043 0.043 0.043 0.043 0.043	10 0 0 8 0 0 2 11 0 5 0 0 2 3 3	2 3 0 0 0 0 0 0 0
100 100 100 100 100 100 100 100 100 100	5 5 4 4 1 1 5 5 2 2 8 8 5 5 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	0.01 0.044 0.258 0.0388 0.0388 0.0388 0.0388 0.0398 0.0091 0.066 0.027 0.066 0.020 0.11 0.091 ND ND ND ND ND ND ND ND ND ND ND ND ND	0.854 0.333 3.179 0.346 1.569 2.305 0.263 1.36 4.18 40.1 40.1 40.1 40.1 40.1 40.1 40.1 40.1	0.854 0.854 0.333 3.179 0.346 1.569 0.346 1.569 2.306 0.263 1.36 0.263 1.36 ND ND ND ND ND ND ND ND ND ND ND ND ND	0.26 0.1 0.68 0.1 0.2 0.27 0.094 0.13 0.56 1 1 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037	0.102 0.151 0.075 0.075 0.079 0.075 0.079 0.075 0.010 0.078 0.010 0.0785 0.0105 0.0105 0.005 0.005 0.005 0.005 0.005 0.001 0.001 0.001 0.001 0.001 0.001	0.22 0.31 0.1 1.1 0.11 0.11 0.11 0.18 0.72 0.089 0.26 0.26 0.093 0.26 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043	10 0 8 0 2 10 1 0 5 0 0 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0	2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
100 100 100 100 100 100 100 100 100 100	5 5 5 4 1 1 5 5 2 8 8 5 6 0 0 0 0 0 0 0	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	0.01 0.01 0.028 0.038 0.038 0.038 0.038 0.039 0.060 0.027 0.066 0.02 0.11 0.091 ND ND ND ND ND ND ND ND ND ND ND ND ND	0.854 0.333 3.179 0.346 1.569 2.305 0.263 1.36 2.044 7.6 4.18 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	0.854 0.854 0.333 3.179 0.346 1.559 0.246 1.569 2.305 0.263 1.36 0.283 1.38 0.283 1.38 0.283 1.38 0.283 0.800 0.80	0.26 0.1 0.68 0.1 0.27 0.094 0.13 0.56 1 1 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037	0.102 0.151 0.075 0.075 0.079 0.079 0.079 0.079 0.071	0.22 0.31 0.1 1.1 0.11 0.11 0.11 0.011 0.048 0.72 0.089 0.72 0.089 0.69 0.69 0.69 0.41 1.5 0.043 0.043 0.043 0.043 0.043	10 0 8 0 0 2 1 1 0 5 5 0 0 2 2 3 3	2 3 0 0 0 0 0 0 0 0 0 0 0 0
100 100 100 100 100 100 100 100 100 100	5 5 4 4 1 1 5 2 2 8 5 5 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	0.01 0.044 0.258 0.038 0.023 0.023 0.023 0.023 0.026 0.027 0.056 0.007 ND ND ND ND ND ND ND ND ND ND ND ND ND	0.854 0.333 3.179 0.346 1.569 2.305 0.263 1.36 2.044 7.6 4.18 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	0.854 0.854 0.333 3.179 0.346 1.559 2.205 0.223 1.559 2.204 0.283 1.76 0.283 1.76 0.283 1.76 0.283 1.76 0.283 0.28	0.26 0.1 0.68 0.1 0.2 0.2 0.27 0.094 0.13 0.56 1 1 1 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037	0.102 0.151 0.075 0.075 0.079 0.079 0.079 0.079 0.071	0.22 0.31 0.1 1.1 0.11 0.11 0.11 0.48 0.72 0.089 0.26 0.099 0.26 0.069 0.43 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043	10 0 8 8 0 2 2 10 1 1 0 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0	2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
100 100 100 100 100 100 100 100 100 100	5 5 4 4 1 1 5 5 2 8 8 5 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	0.01 0.044 0.258 0.038 0.023 0.023 0.023 0.0397 0.066 0.02 0.070 0	0.854 0.333 3.179 0.346 1.569 0.263 1.36 2.044 7.6 4.18 4.18 4.0.1	0.854 0.333 3.179 0.346 1.569 2.305 0.263 1.569 2.2044 7.76 4.18 ND ND ND ND ND ND ND ND ND ND ND ND ND	0.26 0.1 0.68 0.1 0.2 0.2 0.2 0.27 0.094 13 0.56 1 1 1 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037	0.102 0.151 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.076 0.077	0.22 0.31 0.1 1.1 0.11 0.11 0.11 0.11 0.11 0	10 0 8 8 0 2 2 110 1 1 0 0 5 5 0 0 0 0 0 0 0 0 0 0 0 0	2 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
00 00 00 00 00 00 00 00 00 00 00 00 00	5 5 5 4 1 1 1 5 5 2 2 8 5 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0	0.01	0.854 0.333 3.179 0.346 1.569 0.346 1.569 2.305 0.263 1.36 2.044 7.6 4.18	0.854 0.333 3.179 0.346 1.559 2.305 0.263 1.569 2.204 1.569 2.204 1.36 0.263 1.00 0.263 0.	0.26 0.1 0.68 0.1 0.2 0.2 0.2 0.27 0.094 0.13 0.056 1 1 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037	0.102 0.151 0.075 0.075 0.075 0.075 0.075 0.075 0.076	0.22 0.31 0.1 1.1 0.11 0.11 0.11 0.11 0.11 0	10 0 8 8 0 2 10 11 0 0 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0	2 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
100 100 100 100 100 100 100 100 100 100	5 5 4 1 1 1 5 2 2 8 8 5 5 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	0.01	0.854 0.333 3.179 0.346 1.569 0.346 1.569 2.305 0.263 1.36 2.004 7.6 4.18 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	0.854 0.333 3.179 0.336 1.559 1.559 2.305 0.263 1.569 2.2044 7.6 4.18 ND ND ND ND ND ND ND ND ND ND ND ND ND	0.26 0.1 0.68 0.1 0.68 0.1 0.2 0.2 0.27 0.094 0.13 0.056 1 1 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037	0.102 0.151 0.075 0.179 0.075 0.179 0.075	0.22 0.31 0.11 0.11 0.14 0.44 0.44 0.07 0.72 0.089 0.090 0.090 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043	10 0 8 8 0 0 2 2 10 11 1 0 0 5 5 0 0 0 0 0 0 0 0 0 0 0 0	2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
100 100 100 100 100 100 100 100 100 100	5 5 5 4 1 1 1 5 2 2 2 8 5 5 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	0.01	0.854 0.333 3.179 0.336 1.569 2.305 0.256 1.569 2.305 1.36 2.004 4.18 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	0.854 0.333 3.179 0.336 1.559 1.559 2.006 1.569 2.004 1.569 2.004 1.569 2.004 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.26 0.1 0.68 0.1 0.2 0.2 0.2 0.27 0.094 0.13 0.056 1 1 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037	0.102 0.151 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.077	0.22 0.31 0.11 0.11 0.41 0.44 0.44 0.42 0.72 0.089 0.099 0.089 0.090 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043	10 0 8 8 0 2 2 10 11 1 0 0 5 5 0 0 2 2 3 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0	2 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
100 100 100 100 100 100 100 100 100 100	5 5 5 4 4 1 1 5 5 8 8 5 5 6 6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <1.41 <0.1 <1.41 <1.41 	0.01	0.854 (0.333 3.179 c.1 c.1 c.1 c.1 c.1 c.1 c.1 c.1 c.1 c.1	0.854 0.333 3.179 0.336 3.179 0.346 1.569 1.569 1.569 1.569 1.569 1.560	0.26 0.1 0.68 0.1 0.68 0.1 0.2 0.2 0.27 0.094 0.13 0.056 1 1 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037	0.102 0.151 0.075 0.075 0.077	0.22 0.31 0.31 0.11 0.11 0.11 0.11 0.48 0.48 0.48 0.68 0.69 0.69 0.60 0.60 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043	10 0 8 8 0 2 2 10 10 1 10 0 5 5 5 0 2 2 3 3 3 0 0 0 0 10 10 10 10 10 10 10 10 10 10 1	2 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
100 100 100 100 100 100 100 100 100 100	5 5 5 4 4 1 1 5 5 8 8 5 5 6 6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.001 0.001	0.01	0.854 0.333 3.179 0.346 1.559 0.263 1.559 0.263 2.044 1.559 0.263 2.044 0.1 0.01 0.01 0.01 0.01 0.01 0.01 0	0.854 0.333 3.179 0.346 0.346 1.5868 0.263 1.5868 0.263 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.3	0.26 0.1 0.68 0.1 0.68 0.1 0.2 0.2 0.27 0.094 0.13 0.056 1 1 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037	0.102 0.151 0.057 0.057 0.077 0.077 0.077 0.0775 0.0275 0.	0.22 0.31 0.31 0.31 0.11 0.11 0.11 0.48 0.17 0.48 0.02 0.28 0.28 0.24 1.5 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043	10 0 8 8 0 2 2 10 10 10 10 10 10 10 10 10 10 10 10 10	2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
100 100 100 100 100 100 100 100 100 100	5 5 5 4 1 1 5 5 5 4 1 1 5 5 5 6 6 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7	0.001 0.01 0.01 0.01 0.01 0.01 0.01 0.0	0.01	0.854 0.333 3.179 0.346 1.559 0.263 1.559 0.263 1.559 2.044 1.559 2.041 0.01 0.01 0.01 0.01 0.01 0.01 0.01	0.854 0.333 3.179 0.346 0.346 1.569 0.263 1.569 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263	0.26	0.102 0.151 0.079 0.079 0.079 0.0775 0.0275	0.22 0.31 0.31 0.31 0.11 0.11 0.48 0.48 0.68 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69	10 0 8 8 0 2 2 110 110 110 15 5 0 0 2 2 3 3 3 0 0 0 0 0 110 110 110 110 110 110	2 2 3 3 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
100 100 100 100 100 100 100 100 100 100	S S S S S S S S S S	(0.01) (0.011 0.014 0.044 0.258 0.05	0.854 0.333 3.179 0.346 1.559 0.263 1.559 0.263 1.559 0.263 0.263 0.263 0.264 0.136	0.854 0.333 3.179 0.333 3.179 0.0366 0.3466 0.2506 0.2606 0.2606 1.366 0.2606 1.366 0.2607 0.	0.26 0.01 0.05 0.01 0.05 0.01 0.02 0.02 0.030 0.030 0.037	0.102 0.151 0.079 0.079 0.079 0.079 0.075 0.0275 0.	0.22 0.31 0.31 0.11 0.11 0.11 0.48 0.48 0.072 0.089 0.59 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.6	10 0 8 8 0 2 2 110 110 110 15 5 0 2 2 3 3 3 0 0 0 0 0 110 110 110 110 110 110	2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
100 100 100 100 100 100 100 100 100 100	5 5 5 4 1 1 5 5 5 4 1 1 5 5 5 6 6 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7	0001 0001	0.01	0.854 0.333 3.179 0.346 1.559 0.263 1.559 0.263	0.854 0.333 3.179 0.346 0.346 0.346 0.346 0.346 0.346 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 0.363	0.26	0.102 0.151 0.051 0.079 0.079 0.079 0.075 0.0275 0.	0.22 0.23 0.31 0.11 0.11 0.11 0.14 0.48 0.072 0.089 0.26 0.089 0.26 0.27 0.089 0.26 0.27 0.089 0.083 0.043	10 0 8 8 0 2 2 1 10 10 10 10 10 10 10 10 10 10 10 10 1	2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
100 100 100 100 100 100 100 100 100 100	5 5 5 5 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.001 0.001	0.01	0.854 0.333 3.179 0.346 1.559 0.263 1.559 0.263 1.559 0.263	0.854 0.333 3.179 0.346 0.346 1.5895 0.263 1.5895 0.263 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.3	0.26	0.102 0.151 0.051 0.079 0.079 0.079 0.0275 0	0.22 0.31 0.31 0.31 0.11 0.11 0.48 0.17 0.48 0.072 0.089 0.26 0.089 0.26 0.089 0.043	10 0 8 8 0 2 2 10 10 10 10 10 10 10 10 10 10 10 10 10	2 2 3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5
100 100 100 100 100 100 100 100 100 100	5 5 5 4 4 1 1 1 5 5 2 2 8 8 5 5 6 8 8 8 6 8 8 8 8 6 8 8 8 8 8 8	0001 0001	0.01	0.854 1.559 2.006 1.550	0.854 0.333 3.179 0.333 3.179 0.0368 0.3468 0.2906 0.2906 1.36 1.36 1.36 1.36 1.36 1.36 1.36 1.3	0.26 (0.5) (0.102 0.151 0.079 0.079 0.079 0.0775 0.0275	0.22 0.31 0.31 0.11 0.11 0.11 0.48 0.17 0.089 0.099 0.099 0.099 0.090 0.093 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043	10 0 8 8 0 0 2 2 1 1 1 0 0 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0	2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
100 100 100 100 100 100 100 100 100 100	5 5 5 4 4 1 1 1 1 5 5 1 5 5 5 5 5 6 6 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+0.01	0.01	0.854 0.333 3.179 0.346 1.559 0.263 1.559 0.263 1.559 0.263 0.263 0.263 0.264 0.263	0.854 0.333 3.179 0.346 0.346 0.346 0.346 0.346 0.346 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.38 0.263 1.38 0.263 1.38 0.263 1.38 0.263 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.3	0.26 (0.05) (0.0	0.102 0.151 0.051 0.079 0.079 0.079 0.0775 0.0275 0.0375 0.040 0.040 0.050 0.071	0.22 0.23 0.31 0.31 0.11 0.11 0.11 0.11 0.14 0.15 0.17 0.023 0.023 0.023 0.043	10 0 8 8 0 0 2 2 1 1 1 0 0 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0	2 2 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
100 100 100 100 100 100 100 100 100 100	\$ 5 5 5 4 4 1 1 5 5 5 5 6 4 4 1 1 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	delta delt	0.01	0.884 0.333 3.179 cd.1 1.343 2.517 1.1413 2.517 1.1413 2.517 1.1413 2.515 6.56 5888 5888 5872 2.002 3.003 5888 5872 2.002 3.003 5888 5872 2.003 5888 5872 2.003 5888 5872 2.003 5872 5872 5872 5872 5872 5872 5872 5872	0.854 0.333 3.179 0.346 0.346 1.360 0.263 1.360 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 0.363 0	0.26 (1.05) (1.0	0.102 0.151 0.051 0.079 0.079 0.079 0.0275 0	0.22 0.23 0.31 0.31 0.11 0.11 0.11 0.48 0.17 0.48 0.072 0.089 0.26 0.26 0.27 0.089 0.27 0.28 0.083 0.043 0.0	10 0 8 8 0 0 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10	5 5 5 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	delta delt	0.01	0.854 0.333 3.179 0.346	0.854 0.333 3.179 0.346 0.346 1.586 0.263 1.586 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 0.26	0.26 0.26 0.27 0.	0.102 0.151 0.079 0.079 0.079 0.079 0.0275 0	0.22 0.31 0.31 0.31 0.11 0.11 0.48 0.17 0.48 0.072 0.089 0.26 0.089 0.26 0.27 0.089 0.043	10 0 8 8 0 0 2 2 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0	2 2 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	\$ 5 5 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	delta delt	0.01	0.854 0.333 3.179 0.346 1.569 0.346 1.569 0.346 1.569 0.346	0.854 0.333 3.179 0.346 0.346 0.346 0.346 0.346 0.250 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 0.2	0.26	0.102 0.102 0.151 0.057 0.057 0.077 0.077 0.0775 0.	0.22 0.23 0.31 0.31 0.11 0.11 0.11 0.11 0.11 0.1	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 2 3 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 5 5 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	delta delt	0.01	0.854 (0.333 3.179 (0.358 6.25 6.25 6.25 6.25 6.25 6.25 6.25 6.25	0.854 0.333 3.179 0.333 3.179 0.346 0.346 0.346 0.346 0.263 1.386 1.386 0.263 1.386 0.263 1.380 0.806	0.26 (1.0 c) (0.102 0.102 0.151 0.079 0.079 0.079 0.079 0.0775 0.0275 0.	0.22 0.23 0.31 0.11 0.11 0.11 0.14 0.15 0.17 0.18 0.18 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	23
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 5 5 5 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1	delta delt	0.01	0.854 0.333 3.179 0.346	0.854 0.333 3.179 0.346 0.346 1.586 0.263 1.186 0.263 1.36 0.263 0.363 0.	0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.27 0.	0.102 0.151 0.051 0.079 0.079 0.079 0.0775 0.0275 0	0.22 0.23 0.31 0.31 0.11 0.11 0.48 0.11 0.48 0.072 0.089 0.26 0.089 0.26 0.27 0.089 0.26 0.26 0.089 0.27 0.27 0.089 0.28 0.24 1.5 0.043	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	23
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 5 5 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	delta delt	0.01	0.854 0.333 3.179 0.346	0.854 0.333 3.179 0.333 3.179 0.346 0.346 0.356 0.366 0.263 1.360 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 0.363	0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.27 0.	0.102 0.151 0.051 0.079 0.079 0.079 0.0775 0.0275 0	0.22 0.23 0.31 0.31 0.11 0.11 0.48 0.11 0.48 0.072 0.089 0.26 0.089 0.26 0.27 0.089 0.26 0.26 0.089 0.27 0.27 0.089 0.28 0.24 1.5 0.043	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	23
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 5 5 5 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1	dots dots	0.01	0.854 (0.333 3.179 cd.1 1.33 506 8 8 8057 2 10274 6 0.1 1.3 3.906 8 80557 2 22785	0.854 0.333 3.179 0.346 0.346 0.346 0.346 0.346 0.250 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263	0.26 (0.1 c) 0.1 c) 0.1 c) 0.26 (0.1 c) 0.26 (0.1 c) 0.27 c) 0.27 c) 0.037	0.102 0.102 0.151 0.057 0.057 0.077 0.077 0.077 0.0775 0.0	0.22 0.23 0.31 0.31 0.11 0.11 0.11 0.11 0.14 0.15 0.17 0.088 0.072 0.089 0.083 0.043	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	23
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 5 5 5 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1	dots dots	0.011 0.014 0.044 0.258 0.004 0.258 0.005 0.00	0.854 0.333 3.179 0.349	0.854 0.333 3.179 0.346 0.346 1.586 0.263 1.186 0.263 1.36 0.263 0.363 0.	0.26	0.102 0.151 0.079 0.079 0.079 0.0775 0.0275	0.22 0.23 0.31 0.31 0.11 0.11 0.11 0.48 0.17 0.089 0.093 0.043 0.0	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	23
10	\$ 5 5 4 4 1	delta delt	0.011 0.014 0.044 0.258 0.0044 0.258 0.0054 0.258 0.0054 0.0055	0.854 0.333 3.179 0.250 1.36 0.260 0.261 0.261 0.261 0.271 0.261 0.271 0	0.854 0.333 3.179 0.333 3.179 0.3466 0.3466 0.3263 1.36 0.253 1.36 0.253 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 1.36 0.263 0.363	0.26 0.26 0.27 0.	0.102 0.151 0.051 0.057 0.077 0.077 0.077 0.077 0.077 0.0775 0.07	0.22 0.23 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.3	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 5 5 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	dots	0.011	0.854 (0.333 3.179 cd.1 3.3199	0.854 0.333 3.179 0.333 3.179 0.3466 0.3466 0.368 0.2693 1.36 0.2693 1.36 0.2693 1.37 0.2693 0.2693 0.37 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38	0.26	0.102 0.102 0.151 0.051 0.079 0.079 0.079 0.0775 0.0275 0.0375 0.040 0.040 0.071	0.22 0.22 0.31 0.31 0.11 0.11 0.11 0.11 0.11 0.11	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	23
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 5 5 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0.011 0.014 0.044 0.258 0.0054 0.258 0.0054	0.854 0.333 3.179 0.333 3.179 0.260 1.250 1.360 0.263 1.36 0.265 0	0.854 0.333 3.179 0.333 3.179 0.346	0.26 (1.0 c) (0.102 0.151 0.079 0.079 0.079 0.0775 0.0275	0.22 0.23 0.31 0.31 0.11 0.11 0.11 0.48 0.17 0.48 0.072 0.089 0.029 0.029 0.030 0.043 0.04	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 2 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
100 100 100 100 100 100 100 100 100 100	\$ 5 5 5 4 4 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5	delta delt	0.011 0.014 0.0258 0.0054 0.0264 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0055 0.0054 0.0055 0.00055 0.0	0.854 0.333 3.179 0.333 3.179 0.349	0.854 0.333 3.179 0.333 3.179 0.3466 0.3466 0.3466 0.36666 0.366666 0.366666 0.3	0.26 0.26 0.01 0.01 0.02 0.	0.102 0.102 0.151 0.051 0.079 0.079 0.079 0.0775 0.0275 0.	0.22 0.22 0.23 0.31 0.31 0.11 0.11 0.11 0.11 0.11 0.1	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
100 100 100 100 100 100 100 100 100 100	\$ 5 5 5 4 4 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5	dots	0.011 0.014 0.0258 0.0054 0.0264 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0055 0.0054 0.0055 0.00055 0.0	0.854 0.333 3.179 0.333 3.179 0.349	0.854 0.333 3.179 0.333 3.179 0.3466 0.3466 0.3466 0.36666 0.366666 0.366666 0.3	0.26	0.102 0.102 0.151 0.051 0.075 0.0775	0.22 0.22 0.23 0.31 0.31 0.11 0.11 0.11 0.11 0.11 0.1	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 2 3 3 3 3 3 3 3 3
10	5 5 5 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	delta delt	0.011 0.014 0.044 0.026 0.004 0.026 0.002 0.00	0.854 0.333 3.179 0.333 3.179 0.265	0.854 0.333 3.179 0.333 3.179 0.346	0.26	0.102 0.151 0.079 0.079 0.079 0.077 0.077 0.0775 0.0275 0.	0.22 0.23 0.31 0.31 0.11 0.11 0.48 0.11 0.48 0.072 0.089 0.26 0.089 0.27 0.089 0.043	100	2 2 3 3 3 3 3 3 3 3
100 100 110 110 110 110 110 110 110 110	\$ 5 5 5 4 4 1 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	delta delt	0.011 0.014 0.0258 0.0051 0.014 0.258 0.0051 0.005	0.854 0.333 3.179 0.333 3.179 0.349	0.854 0.333 3.179 0.333 3.179 0.3466 0.3466 0.3466 0.3466 0.356 0.3666 0.3666 0.3666 0.3666 0.3666 0.3666 0.3666 0.3666 0.3666 0.3666 0.3666 0.3666 0.3666 0.3666 0.3666 0.3666 0.3666 0.3666 0.36666 0.36666 0.36666 0.366666 0.36666666666	0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.27 0.	0.102 0.151 0.079 0.079 0.079 0.077 0.077 0.077 0.0775 0.0275 0.0	0.22 0.22 0.23 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.3	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 2 3 3 3 3 3 3 3 3

Human Health Soils Risk Assessment

	Human Health		waters GAC	I.D.	BH01	BH02	BH03	BH04	BH05	BH06	TP01	TP02	TP04	TP05	TP06	TP07	TP08	TP09	TP10	TT01	TT02	TT03	WS01	WS02	WS03	WS04	WS05	WS06	WS07	WS08
Analyte	GAC	Drinking Water Standard	Coastal Environmental Quality Standard	Depth (m)	0.575	0.8	1.75	0.85	2.025	0.55	0.8	0.4	0.9	0.6	0.5	1.45	0.35	0.35	0.5	1.8	0.85	0.7	1.125	0.25	0.6	0.5	0.75	0.6	0.55	0.6
Bis(2-chloroethoxy) methane	2.500*11	0.00545*10	dunity Gundurd	Date	05/04/2018 <0.1	11/04/2018 <0.1	10/04/2018	16/04/2018	<0.01	05/04/2018	<0.01	11/04/2018 <0.01	10/04/2018	10/04/2018	<0.01	09/04/2018	09/04/2018	09/04/2018	06/04/2018	09/04/2018	06/04/2018	06/04/2018	<0.1	<0.01	<0.01	06/04/2018	10/04/2018 <0.01	11/04/2018	11/04/2018	11/04/2018
Bis(2-chloroethyl)ether	2.500 1 ^{#11}	0.00545			<0.1	<0.1			< 0.01	-	< 0.01	< 0.01			< 0.01		-	-		-		-	<0.1	< 0.01	< 0.01	-	< 0.01			
Carbazole Dibenzofuran	1.000*11	0.407*10			<0.1	<0.1	-	-	<0.01	-	< 0.01	<0.01 0.818	-	-	<0.01	-	-	-	-	-	-	-	<0.1	< 0.01	<0.01	-	<0.01 <0.01	النب	H :	-
Hexachlorocyclopentadiene	7.5*11	0.82*10			<0.1	<0.1	-	-	< 0.01	-	<0.01	< 0.01	-	-	< 0.01	-	-	-	-	-	-	-	<0.1	< 0.01	< 0.01	-	< 0.01	-	-	-
Hexachloroethane 1-Methylnaphthalene	24.3 ^{#19} 73 ^{#11}	0.00724*10 0.0187*10			<0.1	<0.1	-	-	<0.01	-	<0.01 3.064	<0.01	-	-	<0.01	-	-	-	-	-	-	-	<0.1	<0.01	<0.01	-	<0.01	 -		
Benzoic Acid	3,300,000*11	13.9*10			-	-	-	-	-	-	6.045	1.725	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-
Phenanthrene, 1-methyl- Anthracene, 1-methyl-					-	-	-	-	-	-	6.045	8.606	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-
Benzene, 1-ethyl-2,3-dimethyl- Hexane, 3-methyl					1.034	-	-	-	-	-	-	1.224 0.783	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			
1-Methyl-4-ethyl 2-phenylsuccinate							-		-	-	-	6.689	-	-	-	-	-	-		-	-	-	-	-	-	-	-			
Pyrene, 1-methyl- Phenanthrene, 2-methyl-					-	-	-	-	-	-	2.957	9.265	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	اجا	H :	-
Azulene, 7-ethyl-1,4-dimethyl-					-	-	-	-	-	-	2.686	1.926	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Pyrene, 1,3-dimethyl- Phenanthrene, 4-methyl-					-	-	-	-	-	-	2.93 5.121	3.804	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	
1,3-Cyclopentadiene, 1,2,3,4-tetramethyl- Benzene, (1-methyl-1-butenyl)-					0.396		-	-	-	-	-	2.858	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	
Cyclohexane, butyl-					-	-	-	-	-	-		0.657	-	-		-		-	-		-	-	-			-	-			
Pentadecane, 2,6,10-trimethyl- D-Homoandrostane, (5,alpha.,13,alpha.)-					-	-	-	-	-	-	1 244	8.945	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	لنب		
Amino Aliphatics											1.244																			
N-nitrosodi-n-propylamine Anilines	0.33*11	0.00000309#10			<0.1	<0.1	-	-	<0.01	-	<0.01	<0.01	-	-	<0.01	-	-	-	-	-	-	-	<0.1	<0.01	<0.01	-	<0.01	لــنــا	 	
2-nitroaniline	8,000*11	0.176*10			<0.1	<0.1	-	-	<0.01	-	<0.01	<0.01	-	-	<0.01	-	-	-	-	-	-	-	<0.1	<0.01	<0.01	-	<0.01		-	
3-nitroaniline 4-chloroaniline	11#11	0.000385#10			<u.1 <0.1</u.1 	<0.1	-	-	<0.01	-	<0.01	<0.01 <0.01	-	-	<0.01	-	-	-	-	-	-		<0.1	<0.01	<0.01	-	<0.01 <0.01		-	
4-nitroaniline	110*11	0.000385 ^{#10} 0.00707 ^{#10}			<0.1	<0.1	-	-	<0.01	-	<0.01	<0.01	-	-	<0.01	-	-	-	-	-	-	-	<0.1	<0.01	<0.01	-	<0.01		\vdash	二
Explosives 2,4-Dinitrotoluene	3.760*19	0.000349#10			<0.1	<0.1	-	-	<0.01	-	<0.01	<0.01	-	-	<0.01	-	-	-	-	-	-	-	<0.1	<0.01	<0.01	-	< 0.01		-	一
2,6-dinitrotoluene Nitrobenzene	1.880*19	0.0000833 ^{#10} 8 to 63 ^{#3}			<0.1	<0.1	-	-	< 0.01	-	< 0.01	<0.01	-	-	<0.01	-	-	-	-	-	-	-	<0.1	< 0.01	<0.01	-	< 0.01	اجا	H :	-
Solvents		810 65																										=		=
Cyclohexane Decane	27.000*11				0.461	-	-	-	-	-	-	1.11 - 3.109 0.425 - 2.04	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	
Heptane		16.1*10			-		-	-	-	-	-	0.955 - 1.611	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	
Hexane Isophorone	2.500 ^{#11} 2.400 ^{#11}	16.1 0.0397 ^{#10}			<0.1	<0.1	-	-	<0.01	-	< 0.01	2.024 <0.01	-	-	<0.01	-		-	-		-	-	<0.1	<0.01	<0.01	-	< 0.01			
Octane	3.400*11				0.299	-	-	-	-	-	-	1.479 - 3.026	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	لنب		
Metals																														二
Arsenic Barium	640 ^{#18} 22,100 ^{#19}	5#1 53.3#3	12.5 ⁸⁶		0 - 21 0 - 504	0 - 35.8 0 - 350	8.9 133	9.3 127	129	10.7 163	26.3 369	21.6 337	7.4 116	9 162	10.3		7.2 117	6.8 65	112	112	144	98	0 - 16.3 0 - 310	11.4 121	7.3 169	8.9 169	10.5 147	6.4 133	7.9 120	12.7 116
Beryllium	12*18	20.4*3	#19		0 - 2.1	0 - 2.3	1.2	1.4	1.2	4.2 2.5	1.9	1.8	1.1 1.5	1.3	1.3	1.3			1.3	1.4	1.5	1	0 - 1.9	1.3	1.5	1.3	1.5	1.4	1.2	1.3
Boron Cadmium	240.000 ^{#18} 190 ^{#18}	10 ⁹¹ 0.5 ⁹¹	70.3 ^{#13} 0.02 ^{as}		0 - 2.9 0 - 3.1	0 - 4.2 0 - 1.7	0.8	0.2	0.1	<0.1	3.4 1.8	3.6 0.8	0.2	1.6 0.2	4.4 0.3	0.2	1.2 <0.1	0.9	0.2		0.2	0.1	0 - 2.6 0 - 1.6		3.4 0.2	2.1 <0.1	2.2 0.4		0.6	0.2
Chromium (hexavalent) Chromium (III+VI)	190°18 33°18 8.600°18		0.0108**		<0.3 0 - 79.8	<0.3 0 - 82.2	< 0.3		< 0.3	<0.3	<0.3 75.1	< 0.3	<0.3 64	<0.3 60.4	<0.3	<0.3 69	< 0.3	<0.3 44.9	< 0.3	< 0.3	<0.3 75.9	< 0.3	<0.3 0 - 68.7	<0.3	<0.3 65.2	<0.3 85.2	<0.3 71.5	< 0.3	<0.3 67	<0.3 112
Chromium (Trivalent)	8.600*18				0 - 79.8	0	59.8	62.1	34.6	81.5	-	-	64	60.4	0	69	81.4	44.9	87.6	52.6	75.9	106	0 - 68.7	60	65.2	85.2	71.5	50.1	67	112
Copper Lead	68.000 ^{#18} 2.300 ^{#15}	200 ⁸¹ 26.9 ⁸¹	0.376 ^{NS}		0 - 148 0 - 124	0 - 291 0 - 126	11 13	14 12	11 12	13 15	205 103	158 71	11	15 11	18 28	9 15	15 15	11	21 26	16 13	21 20	13 19	0 - 113 0 - 73	20 22	45 42	15 16	28 34	10 10	21	6 19
Mercury Nickel	1,100#18				0 - 1.7	<0.1 - 0	<0.1	<0.1	<0.1 29.6	<0.1	2.3	1.7	<0.1 26.5	<0.1 28.2	<0.1 29.7	<0.1 28.6	<0.1 37.3	<0.1	<0.1 26.4	<0.1	<0.1	<0.1	<0.1 - 0 0 - 92.4	< 0.1	0.2 45.8	<0.1 30.1	<0.1 29.8	<0.1 33.3	<0.1	<0.1 27.6
Nickel Selenium	980 ^{#18} 12.000 ^{#18}	10 ^{#1} 0.5 ^{#1}	4.3 88		0 - 163.1 0 - 10	0 - 111.9 0 - 4	39.4 <1	30.2 <1	29.6 <1	19.7	121.9	81.6 4	26.5 2	28.2	29.7	28.6	37.3 <1	19	26.4 <1	32.4	30.9 <1	23	0 - 92.4		-4	30.1	29.8	33.3	22.3 <1	27.6
Vanadium	9.000#18	1.09 ^{#10} 228 ^{#10}	1.26 ^{#13} 0.250 ^{#6}		0 - 338 0 - 1,275	0 - 227	42 61	49 55	36 59	79 53	275 947	186 623	39 50	45 56	58 84	46 62	52 66	30 73	56 106	46 61	62 71	56 57	0 - 231	67 131	87	54 67	69 149	45 113	40 93	53 79
Organics	730 000°18	228***	0.259**		0 - 1,275	0 - 937	61	55	59	53	947	623	50	36	84			/3	106	61	/1	5/	0 - 663	131	231	6/	149	113	93	79
Organic Matter (%) Inorganics					0	0	0.7	0.6	0.6	1.2	-	-	0.6	1	0	0.8	0.7	0.7	2	0.7	2.1	1.5	0	2	7.9	1	3.9	0.6	1.1	0.9
Ammoniacal Nitrogen as N			21 (unionised ammonia) #8		-	-	-	-	<0.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ammoniacal Nitrogen as NH4 Chloride					39.3 0 - 39	12.8 0 - 11	<0.6	-	17	0.8	41.7	13.5	<0.6	<0.6	8.3	<0.6	<0.6	<0.6	1.5	<0.6	<0.6	<0.6	30.5 0 - 89	2.6 1,582	20.2 58	<0.6	14.2 54	<0.6	<0.6	<0.6
Fluoride	47.000*11				4.5	11.2	-	-	< 0.3	-	8	16.4	-	-	6.9	-	-	-	-	-	-	-	3.7	0.9		-	3.7		-	
Nitrate (as N) Nitrate (as NO3-)	1,900,000#11				<2.5 - 0	<2.5 - 0			<2.5		<2.5	<2.5			<2.5 - 0								<2.5 - 0	<2.5	<2.5		<2.5			
pH (Lab) (pH units) Sulphide			-		7.31 53	7.17 <10	8.27	7.91	8.12	8.07	7.22	7.67 21	8.09	8.52	7.67 <10	8.25	7.85	8.46	7.26	7.97	7.78	7.69	7.29 25	7.52 <10	7.34 53	8.5	7.55 <100	8.28	8.32	7.86
Total Sulphate					0 - 8,841	<10 0 - 44,355	-	-	439	-	30 16,251	6,783	-	-	856	-		-	-	-	-	-	0 - 10,971	701	6,510	-	2,252			
Asbestos Asbestos Type					Chrysotile	Chrysotile	NAD	NAD	NAD	NAD	Chrysotile	Chrysotile	NAD	NAD	Chrysotile	NAD	NAD	NAD	NAD	NAD	NAD	NAD	Chrysotile	NAD	NAD	NAD	NAD	NAD	NAD	NAD
Asbestos Level Asbestos Gravimetric & PCOM Total					<0.1 <0.001	<0.1	NAD	NAD	NAD	NAD	<0.1	<0.1	NAD	NAD	<0.1 <0.001	NAD	NAD	NAD	NAD	NAD	NAD	NAD	<0.1	NAD	NAD	NAD	NAD	NAD	NAD	NAD
Asbestos Gravimetric Quantification (ACMs)					< 0.001		-	-		<u> </u>	<0.001	<0.001	- 1	<u> </u>	< 0.001		1		1				< 0.001							
Asbestos fibres Other					Fibre bundles	Fibre bundles	-	NAD	NAD	NAD	ibre bundl	Fibre bundles	NAD	NAD	ibre bundle	NAD	NAD	NAD	NAD	NAD	NAD	NAD	Fibre bundles	NAD	NAD	NAD	NAD	┌╌┚	\vdash	——
1,4-Methanonaphthalene					-	-	-	-	-	-	4.447	3.154	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<u> </u>			
1H-Indene, 2,3-dihydro-1,6-dimethyl- 3-Methylpentane					-	:		-	-	1	-	7.319 0.334	-	-	1	1	1	1	1	-	1	1	-	-	1	-	:		- : - 	┌┼┤
Antra-9,10-quinone	00-411				-	- 0.400	-	-	-	-	3.885	1.164	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			
Carbonyl Sulphide Cyclohexane, 1,2,3-trimethyl-, (1.a.,2.b.,3.a.)-	280*11				0.372	0.186		-		<u>_</u> :	<u>_</u> :	-			<u>_</u> :										<u>_</u> :			ات	ᆖ	
Cyclohexane, 1,2,4-trimethyl-, (1.a.,2.b.,4.b.)- Cyclohexane, 1,2-dimethyl-, trans-		_			0.34 0.35			-		1 :	1 :	0.664 2.017			-	-	-		1 -	-	-	-	1	-		-				=
Cyclopentane, 1,2,4-trimethyl-					-	-	-	-	-	-		0.957	-	-	-	-	-	-	-	-	-	-	-	-		-				
Dibenzothiophene (µg/kg) Dodecane	12.000.000*11	999.000.000.000.001*10				-	-	-	-	-	5,352 6.256		-	-	-	-	-	-	-	-	-	-	-	-	-	-		النب		
Eicosane					·	-	-	-	-	-	-	2.08	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	
Ethyl 2-Chloro Acetoacetate Natural Moisture Content (%)					0	0	17.1	16	16.5	20.9	1	1.565	17.6	23.8	1	13.7	22	11.9	17.1	21.1	20.5	15.5	0	20.7	34.3	17.5	22	20.4	17.6	24.9
Nonane	72*11				0.82	-	-		-	-	-		-	-	-	-	T -	-	-	-	-	-	-	-	-	-	-			
Octadecane Octadecanoic Acid					-	-	-	-	-	-	1	2.717 0.519	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-	
Pentane, 2,3-dimethyl Pentane, 2,4-dimethyl-					0.163	-	-	-	-	-	-	0.828	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	
Pentane, 2,4-dimethyl- Tetracosane					0.623			-		E		0.154											-				-	ك		
									_	_			_	_				_			_			_	_	_				

Numb		Minimum		Maximum		Average			Number	Number of
er of	Number of	Concentra	Minimum	Concentr	Maximum	Concentra	Median	Standard	of	Guideline
Result	Detects	tion	Detect	ation	Detect	tion	Concentration	Deviation	Guideline	Exceedances
10	0	<0.01	ND	<0.1	ND	0.037	0.01	0.043	10	0
10	0	<0.01	ND	<0.1	ND	0.037	0.01	0.043	10	0
10	0	<0.01	ND	<0.1	ND	0.037	0.01	0.043	0	0
10	1	< 0.01	0.818	0.818	0.818	0.12	0.01	0.25	1	1
10	0	< 0.01	ND	<0.1	ND	0.037	0.01	0.043	0	0
10	0	< 0.01	ND	<0.1	ND	0.037	0.01	0.043	10	0
1	1	3.064	3.064	3.064	3.064		3.064		1	1
1	1	1.725	1.725	1.725	1.725		1.725		0	0
1	1	6.045	6.045	6.045	6.045		6.045		0	0
1	1	8.606	8.606	8.606	8.606		8.606		0	0
2	2	1.034	1.034	1.224	1.224		1.129		0	0
1	1	0.783	0.783	0.783	0.783		0.783 6.689		0	0
1	1	2.957	2 957	2.957	2 957		2.957		0	0
1	1	9.265	9.265	9.265	9.265		9.265		0	0
2	2	1.926	1.926	2.686	2.686	_	2.306		0	0
1	1	2.93	2.93	2.93	2.93		2.93		0	0
2	2	3.804	3.804	5.121	5.121		4.4625		0	0
1	1	0.396	0.396	0.396	0.396		0.396		0	0
1	1	2.858	2.858	2.858	2.858		2.858		0	0
1	1	0.657	0.657	0.657	0.657		0.657		0	0
1	1	8.945	8.945	8.945	8.945		8.945		0	0
1	1	1.244	1.244	1.244	1.244		1.244		0	0
										_
10	0	<0.01	ND	<0.1	ND	0.037	0.01	0.043	10	0
	la		Lun.		lun.	In one	0.01	0.010	lo.	le .
10	0	<0.01	ND ND	<0.1	ND ND	0.037	0.01	0.043 0.043		0
10		<0.01	ND ND	<0.1	ND	0.037	0.01	0.043	10	
10	0	<0.01	ND ND	<0.1	ND ND	0.037	0.01	0.043	10	0
.0	lo.	1-0.01	1.40	J-0.1	1.10	0.001	0.01	0.040	1.0	lo.
10	0	<0.01	ND	<0.1	ND	0.037	0.01	0.043	10	0
10	0	<0.01	ND	<0.1	ND	0.037	0.01	0.043	10	0
10	0	<0.01	ND	<0.1	ND	0.037	0.01	0.043	0	0
2		0.461	0.461	3.109	3.109		1.28525			0
1	1	0.425	0.425	2.04	2.04		1.2325		0	0
1	1	0.955	0.955	1.611	1.611		1.283		0	0
1	1	2.024	2.024	2.024	2.024		2.024		0	0
10	0	< 0.01	ND	<0.1	ND	0.037	0.01	0.043	3	0
1	1	1.479	1.479	3.026	3.026		2.2525		0	0
1	п	0.299	0.299	0.299	0.299		0.299		0	0
20	26	n	6.4	35.8	35.8	11	9.35	4.6	26	26
26		0	65	504	504	153		68	26	26
26		0	0.7	4.2	4.2	1.4	1.3	0.62	0	0
26	26	0	0.8	4.4	4.4	1.8	1.5	0.95	0	0
26	23	0	0.1	3.1	3.1	0.4	0.2	0.44	26	23
26	0	<0.3	ND	<0.3	ND	0.3	0.3	0	26	0
26	26	0	34.6	112	112	65	63.7	20	0	0
24	24	0	34.6	112	112	61	63.05	27	0	0
26	26	0	6	291	291	37	15	52	26	26
26 26	26	0	0.2	126	126	0.28	19 0 1	0.54	26	26
26	26	0	19	163.1	163.1	39	30 15	23	26	26
26		0	1	103.1	103.1	1.8	1.5	11	26	16
26		0	30	338	338	76	55	56	26	26
26		0	50	1275	1275		76	230	26	26
						•				
24										
	24		0.6	7.9	7.9	1.3	0.75	1.7	0	0
		0			7.9			1.7		
1	0	<0.6	ND	<0.6	ND	1	0.6		0	0
1 24	0	0 <0.6 <0.6	ND 0.8	<0.6 41.7	ND 41.7	8.1	0.6	13	0	0
7	0 11 7	<0.6 <0.6 0	ND 0.8 17	<0.6 41.7 1582	ND 41.7 1582	8.1 254	0.6 0.6 44.5		0	0
1 24 7 10	0	0 <0.6 <0.6 0 <0.3	ND 0.8 17 0.9	<0.6 41.7 1582 16.4	ND 41.7 1582 16.4	8.1	0.6 0.6 44.5 4.1	13	0 0 0	0 0 0
7	0 11 7 9	<0.6 <0.6 0 <0.3 2.5	ND 0.8 17 0.9 ND	<0.6 41.7 1582 16.4 0	ND 41.7 1582 16.4 ND	8.1 254 5.8	0.6 0.6 44.5 4.1 1.25	13 586 5	0 0 0 0 0 0	0 0 0 0
7	0 11 7 9	0 <0.6 <0.6 0 <0.3 2.5 <2.5	ND 0.8 17 0.9	<0.6 41.7 1582 16.4 0 <2.5	ND 41.7 1582 16.4 ND ND	8.1 254 5.8	0.6 0.6 44.5 4.1 1.25 2.5	13	0 0 0	0 0 0
7 10 1 9 26 9	0 11 7 9 1 3 26	0 <0.6 <0.6 0 <0.3 2.5 7.17 <10	ND 0.8 17 0.9 ND ND ND 7.17	<0.6 41.7 1582 16.4 0 <2.5 8.52 <100	ND 41.7 1582 16.4 ND ND ND 8.52 53	8.1 254 5.8 2.1 7.8 35	0.6 0.6 44.5 4.1 1.25 2.5 7.855 25	13 586 5 0.63 0.43	0 0 0 0 0	0 0 0 0 0 0
7 10 1 9	0 11 7 9 1	0 <0.6 <0.6 0 <0.3 2.5 <2.5 7.17	ND 0.8 17 0.9 ND ND 7.17	<0.6 41.7 1582 16.4 0 <2.5 8.52	ND 41.7 1582 16.4 ND ND ND 8.52	8.1 254 5.8 2.1 7.8	0.6 0.6 44.5 4.1 1.25 2.5 7.855	13 586 5 0.63 0.43	0 0 0 0 0 0	0 0 0 0 0 0
7 10 1 9 26 9	0 111 7 9 1 3 26 5	<0.6 <0.6 0 <0.3 2.5 <2.5 7.17 <10	ND 0.8 17 0.9 ND ND 7.17 21 439	<0.6 41.7 1582 16.4 0 <2.5 8.52 <100 44355	ND 41.7 1582 16.4 ND ND 8.52 53 44355	8.1 254 5.8 2.1 7.8 35	0.6 0.6 44.5 4.1 1.25 2.5 7.855 25	13 586 5 0.63 0.43	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0
7 10 1 9 26 9	0 11 7 9 1 3 26 5	0.6 <0.6 0 <0.3 2.5 <2.5 7.17 <10 0	ND 0.8 17 0.9 ND ND 7.17 21 439	<0.6 41.7 1582 16.4 0 <2.5 8.52 <100 44355	ND 41.7 1582 16.4 ND ND 8.52 53 44355	8.1 254 5.8 2.1 7.8 35 6588	0.6 0.6 44.5 4.1 1.25 2.5 7.855 25 4953	13 586 5 0.63 0.43 30 7199	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0
7 10 1 9 26 9	0 11 7 9 1 3 26 5 10	0	ND 0.8 17 0.9 ND ND 7,17 21 439	<0.6 41.7 1582 16.4 0 <2.5 8.52 <100 44355	ND 41.7 1582 16.4 ND ND 8.52 53 44355	8.1 254 5.8 2.1 7.8 35 6588	0.6 0.6 44.5 4.1 1.25 2.5 7.855 25 4953	13 586 5 0.63 0.43 30 7199	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0
7 10 1 9 26 9	0 111 7 9 1 3 226 5 110	0 <0.6 <0.6 <0.6 0 <0.3 2.5 <2.5 <10 <10 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0	ND 0.8 17 0.9 ND ND ND 7.17 21 439 ND ND ND ND ND ND ND ND ND ND ND ND ND	<0.6 41.7 1582 16.4 0 <2.5 8.52 <100 44355	ND 41.7 1582 16.4 ND ND ND 8.52 53 44355 ND ND ND ND ND ND ND ND ND ND ND ND ND	8.1 254 5.8 2.1 7.8 35 6588	0.6 0.6 44.5 4.1 1.25 2.5 7.855 25 4953	13 586 5 0.63 0.43 30 7199	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0
7 10 1 9 26 9	0 111 7 9 1 3 26 5 10	0	ND 0.8 17 0.9 ND ND 7.17 21 439 ND ND ND ND ND ND ND ND ND ND ND ND ND	<0.6 41.7 1582 16.4 0 <2.5 8.52 <100 44355 0 -0.1 <0.001	ND 41.7 1582 16.4 ND ND 8.52 53 44355 ND ND ND ND ND ND ND ND ND ND ND ND ND	8.1 254 5.8 2.1 7.8 35 6588	0.6 0.6 44.5 4.1 1.25 2.5 7.855 25 4953	13 586 5 0.63 0.43 30 7199	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0
7 10 1 9 26 9	0 111 7 9 1 3 226 5 110	0 <0.6 <0.6 <0.6 0 <0.3 2.5 <2.5 <10 <10 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0	ND 0.8 17 0.9 ND ND ND 7.17 21 439 ND ND ND ND ND ND ND ND ND ND ND ND ND	<0.6 41.7 1582 16.4 0 <2.5 8.52 <100 44355	ND 41.7 1582 16.4 ND ND ND 8.52 53 44355 ND ND ND ND ND ND ND ND ND ND ND ND ND	8.1 254 5.8 2.1 7.8 35 6588	0.6 0.6 44.5 4.1 1.25 2.5 7.855 25 4953	13 586 5 0.63 0.43 30 7199	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0
7 10 1 9 26 9	0 111 7 9 1 3 26 5 10	0 <0.6 <0.6 <0.6 0 <0.3 2.5 <2.5 <2.5 <10 0 <0.3 <0.10 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <	ND 0.8 17 0.9 ND ND 7,17 21 439 ND ND ND ND ND ND ND ND ND ND ND ND ND	<0.6 41.7 1582 16.4 0 <2.5 8.52 <100 44355 0 <0.1 <0.001 <0.001	ND 41.7 1582 16.4 ND ND 8.52 53 44355 ND ND ND ND ND ND ND ND ND ND ND ND ND	8.1 254 5.8 2.1 7.8 35 6588	0.6 0.6 44.5 4.1 1.25 2.5 7.855 25 4953	13 586 5 0.63 0.43 30 7199	0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 10 1 9 26 9	0 111 7 9 1 3 26 5 10	0	ND 0.8 17 0.9 ND ND 7.17 21 439 ND ND ND ND ND ND ND ND ND ND ND ND ND	<0.6 41.7 1582 16.4 0 <2.5 8.52 <100 44355 0 40.1 <0.001 0 4.447	ND 41.7 1582 16.4 ND ND ND 8.52 53 44355 ND ND ND ND ND ND ND ND ND ND ND ND ND	8.1 254 5.8 2.1 7.8 35 6588	0.6 0.6 44.5 44.1 1.25 2.5 7.855 25 4953 0.1 0.001	13 586 5 0.63 0.43 30 7199	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 10 1 9 26 9	0 111 7 9 1 1 3 26 5 5 10 0 0 0	0 <0.6 <0.6 <0.6 0 <0.3 2.5 <2.5 <2.5 <10 0 <0.3 <0.10 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <	ND 0.8 17 0.9 ND ND 7,17 21 439 ND ND ND ND ND ND ND ND ND ND ND ND ND	<0.6 41.7 1582 16.4 0 <2.5 8.52 <100 44355 0 <0.1 <0.001 <0.001	ND 41.7 1582 16.4 ND ND 8.52 53 44355 ND ND ND ND ND ND ND ND ND ND ND ND ND	8.1 254 5.8 2.1 7.8 35 6588	0.6 0.6 44.5 4.1 1.25 2.5 7.855 25 4953	13 586 5 0.63 0.43 30 7199	0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 10 1 9 26 9	0 111 7 9 1 1 3 26 5 5 110	0 <0.6 <0.6 <0.6 0 <0.6 0 <0.3 2.5 <2.5 7.17 <10 0 <0.1 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.00	ND 0.8 17 0.9 ND ND ND ND ND ND ND ND ND ND ND ND ND	<0.6 41.7 1582 16.4 0 <2.5 8.52 <100 44355 0 <0.1 <0.001 <0.001 <0.001 0 4.447 7.319 0.334	ND 41.7 1582 16.4 ND ND 8.52 53 44355 ND ND ND ND ND ND ND ND ND ND ND ND ND	8.1 254 5.8 2.1 7.8 35 6588	0.6 0.6 0.6 44.5 4.1 1.25 2.5 7.855 25 4953 0.1 0.001 0.001 0.001 0.001 0.001	13 586 5 0.63 0.43 30 7199	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 10 1 9 26 9	0 111 7 9 1 1 3 226 5 5 110	0 <0.6 (0.6 0 0.3 0.3 0.3 2.5 (2.5 7.17 <10 0 0.3 0.3 0.3 0.3 0.3 0.1 (0.001 0.001 0.001 0.001 0.001 0.001 0.334 1.164 0.186 0	ND 0.8 17 0.9 ND ND ND ND ND ND ND ND ND ND ND ND ND	<.0.6 41.7 1582 16.4 0 <2.5 8.52 -100 44355 0 <0.1 -0.001 -0.001 0 3.334 3.885 0.186	ND 41.7 1582 16.4 ND ND 8.52 53 44355 ND ND ND ND ND ND ND ND ND ND ND ND ND	8.1 254 5.8 2.1 7.8 35 6588	0.6 0.6 4.4.5 4.1 1.25 2.5 7.855 4953 0.1 0.001 0.001 3.8005 7.319 0.334 2.5245 0.186	13 586 5 0.63 0.43 30 7199	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 10 1 9 26 9	0 111 7 9 1 1 3 26 5 5 110	0 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.	ND 0.8 17 0.9 ND ND ND ND ND ND ND ND ND ND ND ND ND	<0.6 41.7 1582 16.4 0 <2.5 8.52 <100 44.355 0 <0.1 <0.001 <0.001 <0.001 <0.334 3.885 <0.186 <0.372 <0.372	ND 41.7 1582 115.4 ND ND ND ND ND ND ND ND ND ND ND ND ND	8.1 254 5.8 2.1 7.8 35 6588	0.6 0.6 44.5 44.5 4.1 1.25 2.5 7.885 0.1 0.001 0.001 0.001 3.8005 7.319 0.334 0.186 0.186 0.0372	13 586 5 0.63 0.43 30 7199	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 10 1 9 26 9	0 111 7 9 1 1 3 226 5 5 110	00 <0.6 <0.6 0.0 0 <0.3 2.5 <2.5 <2.5 <2.5 <2.10 <0.11 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	ND 0.8 17 0.9 ND ND ND ND ND ND ND ND ND ND ND ND ND	 c0.6 41.7 1582 16.4 0 <2.5 8.52 <100 44355 <0.1 <0.001 <0.001 <0.001 <0.334 3.885 <0.186 <0.372 <0.664 	ND 41.7 1582 16.4 ND ND ND ND ND ND ND ND ND ND ND ND ND	8.1 254 5.8 2.1 7.8 35 6588	0.6 0.6 0.6 4.1 1.25 2.5 7.855 0.1 0.001 0.001 3.8005 7.319 0.334 2.5245 0.186 0.372	13 586 5 0.63 0.43 30 7199	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 10 1 9 26 9	0 111 7 9 1 1 3 226 5 5 110	00 <0.6 <0.6 0 0 <0.3 2.5 <2.5 <2.5 <7.17 <10 0 99999 <0.1 <0.001 <0.001 <0.001 99999 3.154 7.319 0.334 1.164 0.372 0.34 0.354 0.372 0.34 0.354	ND 0.8 117 0.9 0.9 ND ND ND ND ND ND ND ND ND ND ND ND ND	 <0.6 41.7 1582 16.4 0 <2.5 <100 44355 <0.1 <0.001 <0.001 <0.001 <0.334 3.885 0.336 0.372 0.664 0.664 	ND 41.7 1582 116.4 ND ND ND ND ND ND ND ND ND ND ND ND ND	8.1 254 5.8 2.1 7.8 35 6588	0.6 0.6 4.4 1.125 2.5 7.885 26 4.953 0.1 0.001 0.001 0.001 0.001 0.334 0.334 0.186 0.332 0.502 0.372 0.502	13 586 5 0.63 0.43 30 7199	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 10 1 9 26 9	0 111 7 9 1 1 3 226 5 5 110	00 <0.6 <0.6 <0.6 0 <0.6 0 <0.6 0 <0.7 <0.6 0 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7	ND 0.8 17 0.9 0.9 ND ND ND ND ND ND ND ND ND ND ND ND ND	41.7 1582 16.4 0 <2.5 8.52 <100 44355 0 <0.1 <0.001 <0.001 0 4.447 7.319 0.334 3.885 0.186 0.332 0.372 0.664 2.017 0.957	ND 41.7 1582 11.84	8.1 254 5.8 2.1 7.8 35 6588	0.6 0.6 4.1 1.125 2.5 7.865 2.5 4.953 0.1 0.001 0.001 0.001 0.001 0.38005 7.319 0.334 0.372 0.186 0.372 0.196 0.372	13 586 5 0.63 0.43 30 7199	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 10 1 9 26 9	0 111 7 9 1 1 3 226 5 5 110	00 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0	ND 0.8 17 0.9 17 0.9 17 0.9 17 0.9 17 17 17 17 17 17 17 1	 c0.6 41.7 1582 16.4 0 <2.5 8.52 <100 <0.1 <0.001 <0.1 <0.001 <0.001 <0.1 <0.001 <l< td=""><td>ND 41.7 1582 16.4 ND ND ND ND ND ND ND ND ND ND ND ND ND</td><td>8.1 254 5.8 2.1 7.8 35 6588</td><td>0.6 0.6 4.4 1.1 1.25 2.5 7.885 26 4.953 3.8005 7.319 0.334 0.186 0.372 0.502 0.372 0.502 0.186 0.397</td><td>13 586 5 0.63 0.43 30 7199</td><td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td> O</td></l<>	ND 41.7 1582 16.4 ND ND ND ND ND ND ND ND ND ND ND ND ND	8.1 254 5.8 2.1 7.8 35 6588	0.6 0.6 4.4 1.1 1.25 2.5 7.885 26 4.953 3.8005 7.319 0.334 0.186 0.372 0.502 0.372 0.502 0.186 0.397	13 586 5 0.63 0.43 30 7199	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	O
7 10 1 9 26 9	0 111 7 9 1 1 3 226 5 5 110	00 <0.6 <0.6 <0.6 0 <0.6 0 <0.6 0 <0.7 <0.6 0 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7	ND 0.8 17 0.9 ND ND ND ND ND ND ND ND ND ND ND ND ND	0.6 41.7 11582 116.4 0 42.5 8.52 -100 44355 0 -0.1 -0.001 0 0 44355 0 0 -0.1 -0.001 0 0 3.885 0.372 0.372 0.664 2.017 0.957 5853 6.256	ND 41.7 1582 16.4 ND ND ND ND ND ND ND ND ND ND ND ND ND	8.1 254 5.8 2.1 7.8 35 6588	0.6 0.6 4.4 4.5 4.1 1.25 2.5 7.885 2.6 0.1 0.001 0.001 0.001 0.001 3.8005 7.319 0.334 2.5245 0.372 0.150 0.372 0.552	13 586 5 0.63 0.43 30 7199	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 10 1 9 26 9	0 111 7 9 1 1 3 226 5 5 110	00 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0	ND 0.8 177 0.9 ND ND ND ND ND ND ND ND ND ND ND ND ND	0.6 41.7 1582 16.4 0 441.7 1582 16.4 0 42.5 8.52 4100 44355 0 40.001 40.001 0 44.447 7.319 0.334 3.885 0.372 0.664 2.017 0.957 5853 6.256 2.08	ND 41.7 1582 16.4 ND ND ND ND ND ND ND ND ND ND ND ND ND	8.1 254 5.8 2.1 7.8 35 6588	0.6 0.6 0.6 4.4 4.5 4.1 1.25 2.5 7.8855 26 4.0 0.001	13 586 5 0.63 0.43 30 7199	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	O
7 10 1 9 26 9	0 111 7 9 1 1 3 226 5 5 110	00 <0.6 <0.6 <0.6 0 <0.6 0 <0.6 0 <0.7 <0.6 0 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7	ND 0.8 177 0.9 ND ND ND ND ND ND ND ND ND ND ND ND ND	-0.6 41.7 11582 116.4 0 -2.5 8.52 -100 44.355 0 -0.1 -0.001 -0.001 -0.001 0 -0.334 3.885 0.186 0.372 0.684 2.017 0.957 5853 6.256 2.08	ND 41.7 11582 116.4 ND ND ND ND ND ND ND ND ND ND ND ND ND	8.1 254 5.8 5.8 2.1 7.8 35 6588 0.1 0.001 0.001	0.6 0.6 0.6 4.4 4.5 4.1 1.25 2.5 2.5 2.5 2.5 3.8005 0.1 0.001 0.001 0.334 0.334 0.186 0.372 0.50	13 556 5 5 0.63 0.43 30 77199 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	O
7 10 1 9 26 9	0 111 7 9 1 1 3 226 5 5 110	0 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.	ND 0.8 177 0.9 ND ND ND ND ND ND ND ND ND ND ND ND ND	 <0.6 41.7 1582 16.4 0 <2.5 8.52 <10.0 44355 <0.0 <0.001 /ul>	ND 41.7 1582 16.4 ND ND ND ND ND ND ND ND ND ND ND ND ND	8.1 254 5.8 2.1 7.8 35 6588	0.6 0.6 0.6 4.4 4.5 4.1 1.25 2.5 7.8855 26 4.0 0.001 0.001 0.001 0.001 0.001 0.001 1.8050 0.392 0.392 0.392 0.592 0.592 0.592 0.592 0.592 0.592 0.595	13 586 5 0.63 0.43 30 7199	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	O
7 10 1 9 26 9	0 111 7 9 1 1 3 226 5 5 110	0	ND 0.8 177 179 189 189 189 189 189 189 189 189 189 18	 <0.6 41.7 1582 16.4 0 <2.5 8.52 <100 44355 <0.01 <0.001 /ul>	ND 41.7 11582 115.4 ND ND ND ND ND ND ND ND ND ND ND ND ND	8.1 254 5.8 5.8 2.1 7.8 35 6588 0.1 0.001 0.001	0.6 0.6 0.6 4.4 4.5 4.1 1.25 2.5 2.5 2.5 2.5 2.5 3.8005 0.1 0.001 0.001 0.334 0.334 0.334 0.186 0.372 0.372 0.502	13 556 5 5 0.63 0.43 30 77199 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	O
7 10 1 9 26 9	0 111 7 9 1 1 3 226 5 5 110	0	ND 0.8 177 179 179 179 179 179 179 179 179 179	 <0.6 41.7 1582 16.4 0 <2.5 8.52 (10.0 44.355 0 <0.001 /ul>	ND 1582 1582 1582 1582 1582 1582 1582 1582	8.1 254 5.8 5.8 2.1 7.8 35 6588 0.1 0.001 0.001	0.6 0.6 4.1 4.1 2.1 4.1 2.5 4.1 2.5 4.1 2.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4	13 556 5 5 0.63 0.43 30 77199 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	O
7 10 1 9 26 9	0 111 77 9 11 3 3 26 5 5 110 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	ND 0.8 177 179 189 189 189 189 189 189 189 189 189 18	 <0.6 41.7 1582 16.4 0 <2.5 8.52 <100 44355 <0.01 <0.001 /ul>	ND 41.7 11582 115.4 ND ND ND ND ND ND ND ND ND ND ND ND ND	8.1 254 5.8 5.8 2.1 7.8 35 6588 0.1 0.001 0.001	0.6 0.6 0.6 4.4 4.5 4.1 1.25 2.5 2.5 2.5 2.5 2.5 3.8005 0.1 0.001 0.001 0.334 0.334 0.334 0.186 0.372 0.372 0.502	13 556 5 5 0.63 0.43 30 77199 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	O
7 10 1 9 26 9	0 111 77 9 11 3 3 26 5 5 110 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	006 <0.06 <0.06 <0.06 <0.06 <0.06 <0.06 <0.06 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07	ND 0.8 17 0.9 0.9 ND ND ND ND ND ND ND ND ND ND ND ND ND	 <0.6 41.7 1582 16.4 0 <2.5 8.52 <100 44355 <0.001 /ul>	ND 41.7 11582 115.4 ND ND ND ND ND ND ND ND ND ND ND ND ND	8.1 254 5.8 5.8 2.1 7.8 35 6588 0.1 0.001 0.001	0.6 0.6 0.6 1.6 1.6 1.6 1.7 1.7 1.8 1.7 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	13 556 5 5 0.63 0.43 30 77199 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 10 1 9 26 9	0 111 7 9 1 1 3 265 5 5 1 10 0 0 0 0 0 0 0 0 0 0 1 1 1 2 2 2 3 2 3 1 1 1 1 1 1 1 1 1 1 1	0 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.	ND 0.8 177 187 187 187 187 187 187 187 187 18	 <0.6 41.7 1582 16.4 0 <2.5 16.6 <0.0 <10.0 <0.1 <0.1 <0.001 <	ND 41.7 1582 118.4 1.7 1582 118.4 1.7 1582 118.4 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	8.1 254 5.8 5.8 2.1 7.8 35 6588 0.1 0.001 0.001	0.6 0.6 4.1 1.2 4.1 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1	13 556 5 5 0.63 0.43 30 77199 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

All units are in mg/kg unless stated
All grey values were reported below the MD
MDL-Method Detection Limit
NAD-Mo Ashestos Detected

#1 WS Regs 2016 (Eng/Wal) #2 WHO Petroleum DWG 2008

#2 WHO Petroleum DV #3 WHO DWG 2017

#4 WHO 2017 - Tas #5 WHO 2017 - Odd

> WFD England/Wales. 2015 - Saltwater Standards WFD England/Wales. 2015 - MAC-EQS Trans./Coastal

WFD England/Wales. 2015 - AA-EQS Trans./Coastal Water Env! Rens. (Scotland) 2015. AA-EQS Coast

#10 USEPA RSL (tapwater) [Jun #11 USEPA RSL (June 2017)

112 SEPA WAT-SG-53 Marine EQS - MAC - 201

#15 Defra C4SL 12/2014 #16 California Draft health

#17 AECOM DWG (WHO method #18 AECOM (modified LQM/CIEH

#19 AECOM (modified EIC)

(blank): No assessment criteria avai

DWS: Drinking Water Standard EQS: Environmental Quality Sta

XXX XXX XXX

Exceedance of HH Soil. Commercial/Industrial. Sand. TOC >=1.45 to <3.48%
Exceedance of GAC_WTV_ENWA_DWS_SAND19/CTOC
Exceedance of GAC_WTV_ENWA_FOS_Coast SAND19/CTOC

AECOM

Groundwater Contamination Risk Assessment

	Drinking Water	Coastal Environmental	Location	BH01	BH02	BH03	WS03	WS04	WS05	WS06
Analyte VOC	Standard	Quality Standard	Date	10/05/2018	10/05/2018		10/05/2018	10/05/2018	10/05/2018	10/05/2018
1,1,1,2-tetrachloroethane 1,1,2,2-tetrachloroethane	0.57 ^{#10} 0.076 ^{#10}				:	:	<2 <4	<2 <4	<2 <4	<2 <4
1,1-dichloropropene 1,2,3-trichloropropane	0.00075#10					:	<3 <3	<3 <3	<3 <3	<3 <3
1,2,4-trimethylbenzene	56 ^{#10}				-	-	<3	<3	<3	<3
1,2-dibromo-3-chloropropane 1,2-dichloroethane	3#1	10 ^{#8}		-			<2	<2 <2	<2 <2	<2
1,2-Dichloroethene 1,2-dichloropropane 1,3,5-trimethylbenzene	50 ^{#3} 40 ^{#3}			:			<6 <2 <3	<6 <2 <3	<6 <2 <3	<6 <2 <3
1,3-dichloropropane	60 ^{#10} 370 ^{#10}			:	- :		<2	<2	<3 <2	<3 <2
2,2-dichloropropane Bromochloromethane	83#10			:			<1	<2	<2	<1
Bromodichloromethane Bromoform	100 ^{#1} 100 ^{#1}				-	-	<2 <2	<2 <2	<2	<2 <2
Chlorodibromomethane cis-1,3-dichloropropene	100*1					-	<2 <2	<2 <2	<2 <2	<2 <2
Dibromomethane Hexachlorobutadiene	8.3 ^{#10} 0.1 ^{#1}	0.6*7		-	-	-	<3 <1	<3 <1	<3 <1	<3 <1
Isopropylbenzene n-butylbenzene	450 ^{#10} 1.000 ^{#10}	5.5		:	-	-	<3 <3	<3 <3	<3 <3	<3 <3
n-propylbenzene p-isopropyltoluene	660#10				-	-	<3 <3	<3 <3	<3 <3	<3 <3
sec-butylbenzene	2,000#10	= e#12			-	-	<3	<3	<3 <2	<3
Styrene tert-butylbenzene	20 ^{#3} 690 ^{#10}	50 ^{#12}		:			<3	<3	<3	<3
trans-1,3-dichloropropene Trihalomethanes	100#1			:	- :	- 1	<2 <8	<2 <8	<2 <8	<2 <8
VOC TICs Chlorinated Hydrocarbons					-	-	1	1	1	1
1,1,1-trichloroethane 1,1,2-trichloroethane	2,000 ^{#3} 0.28 ^{#10}	100 ^{#12} 300 ^{#12}			-	-	<2 <2	<2 <2	<2 <2	<2
1,1-dichloroethane 1,1-dichloroethene	2.8 ^{#10}				-	-	<3 <3	<3 <3	<3 <3	<3 <3
Carbon tetrachloride Chloroethane	3 ^{#1} 21,000 ^{#10}	12#8		:	-	-	<2 <3	<2 <3	<2 <3	<2 <3
Chloroform Chloromethane	100 ^{#1} 190 ^{#10}	2.5**8			-	-	<2	<2	<2	<2
cis-1,2-dichloroethene	50 ^{#3}	- #8		:		-	<3	<3	<3	<3
Dichloromethane PCE+TCE+DCE+VC	20#3	20#8		:		- 1	<5 <15.1	<5 <15.1	<5 <15.1	<5 <15.1
Sum of PCE and TCE TCE+DCE+VC	10*1			:	- :		<6 <12.1	<6 <12.1	<6 <12.1	<6 <12.1
Tetrachloroethene trans-1,2-dichloroethene	Use PCE + TCE ^{#1} 50 ^{#3}	10 ^{#8}		:	-	-	<3 <3	<3 <3	<3 <3	<3 <3
Trichloroethene Vinyl chloride	10 ^{#1}	10 ^{#8}			-	-	<3 <0.1	<3 <0.1	<3 <0.1	<3 <0.1
Halogenated Benzenes 1,2,3-trichlorobenzene	0.1#1	0.4**					<3	<3	<3	<3
1,2,4-trichlorobenzene 1,2-dichlorobenzene	0.1 ^{#1} 1,000 ^{#3}	0.4** 0.4**			-	-	<1 <1	<1 <1	<1 <1	<1 <1
1,3-dichlorobenzene							<1 <1	<1	<1	<1
1,4-dichlorobenzene 2-chlorotoluene 4-chlorotoluene	300 ^{#3} 240 ^{#10}			:	-		<3	<3	<3	<3
4-chlorotoluene Bromobenzene	250 ^{#10} 62 ^{#10}			:	-	- :	<3 <2	<3 <2	<3 <2	<3 <2
Chlorobenzene Hexachlorobenzene	300 ^{#3}	0.05*7		:	-	- :	<2 <1	<2 <1	<2 <1	<2 <1
Trichlorobenzene (total) Halogenated Hydrocarbons	0.1"1	0.4*8					<4	<4	<4	<4
Dichlorodifluoromethane Bromomethane	200 ^{#10} 7.5 ^{#10}			:	-	-	<2 <1	<2 <1	<2 <1	<2 <1
Trichlorofluoromethane 1,2-dibromoethane	5,200*10 0.4*3				- :	- :	<3 <2	<3 <2	<3 <2	<3 <2
PAH	18#15						<1	<1	<1	<1
Acenaphthene Anthracene	18 ^{#15} 18 ^{#15} 90 ^{#15}	A - #R		:	- :	- :	< 0.5	< 0.5	<0.5 <0.5	< 0.5
Anthracene Benz(a) anthracene	3 5 ⁸¹⁵	0.1**8			-		<0.5 <0.5	<0.5	< 0.5	<0.5 <0.5
Benzo(a) pyrene Benzo(b)&(k)fluoranthene	0.01**	0.00017 ^{#8}		:	:	- 1	<1	<1	<1	<1 <1
Benzo(g,h,i)perylene benzo(g,h,i)perylene + indeno(1,2,3-cd)pyrene	0.1#1	0.00082#7		:		-	<0.5 <1.5	<0.5 <1.5	<0.5 <1.5	<0.5 <1.5
Chrysene Dibenz(a,h)anthracene	7 ^{#15} 0.07 ^{#15}			:			<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5
Fluoranthene Fluorene	4*3 12*15	0.0063#8		:	- :	-	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5
Indeno(1,2,3-c,d)pyrene Naphthalene	0.1 ^{#1} 6 ^{#15}	2 ⁸⁸			- :	-	<1 <1	<1 <1	<1	<1
PAHs (sum of 4)	0.1 ^{#1} 4 ^{#15}	2			-	-	<1.5	<1.5	<1.5	<1.5
Phenanthrene Pyrene	9 ⁸¹⁵			:			<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5
Phenolics 2,4-dimethylphenol	360#10				-	-	<1	<1	<1	<1
2-chloronaphthalene 2-methylphenol	750*10 930*10			:	:	-	<1 <0.5	<1 <0.5	<1 <0.5	<1 <0.5
2-nitrophenol 4-chloro-3-methylphenol	1,400**10	40 ^{a12}		- :		-	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5
4-methylphenol 4-nitrophenol	1.900*10			:	- :		<1 <10	<1 <10	<1 <10	<1 <10
Phenol Halogenated Phenols	5.800*10	7.7*6			-	-	<1	<1	<1	<1
2,4,5-trichlorophenol 2,4,6-trichlorophenol	1.200#10			:	:	- :	<0.5	<0.5	<0.5	<0.5
2,4-dichlorophenol	200 ^{#3} 46 ^{#10}	0.42**6					< 0.5	<0.5	< 0.5	< 0.5
2-chlorophenol Pentachlorophenol	91 ^{#10} 9 ^{#3}	50 ^{#12} 0.4 ^{#8}		:	- :		<1 <1	<1	<1	<1 <1
Phthalates Bis(2-ethylhexyl) phthalate	8*3	1.3**					<5	<5	<5	<5
Butyl benzyl phthalate Diethylphthalate	16 ^{#10} 15,000 ^{#10}	0.75 ^{#6} 200 ^{#12}		- :	- :	-	<1 <1	<1 <1	<1 <1	<1 <1
Dimethyl phthalate Di-n-butyl phthalate	900#10	800°12 8°12		- :	-	-	<1 <1.5	<1 <1.5	<1 <1.5	<1 <1.5
Di-n-octyl phthalate SVOC	200#10	20 ⁸¹²			-	-	<1	<1	<1	<1
2-methylnaphthalene 4-bromophenyl phenyl ether	36#10			- :	- :		<1 <1	<1 <1	<1 <1	<1 <1
4-chlorophenyl phenyl ether	0.12*10				-	-	<1	<1	<1	<1
Azobenzene Bis(2-chloroethoxy) methane	59 ^{#10}			:			<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5
Bis(2-chloroethyl)ether Carbazole	0.014**10			:		- 1	<1 <0.5	<1 <0.5	<1 <0.5	<1 <0.5
Dibenzofuran Hexachlorocyclopentadiene	7.9 ^{#10}			- :	-	-	<0.5 <1	<0.5 <1	<0.5 <1	<0.5 <1
Hexachloroethane Amino Aliphatics	0.33*10				-	-	<1	<1	<1	<1
N-nitrosodi-n-propylamine Anilines	0.011**10						<0.5	<0.5	<0.5	<0.5
2-nitroaniline 3-nitroaniline	190#10			:	:	- :	<1 <1	<1 <1	<1 <1	<1 <1
4-chloroaniline 4-nitroaniline	0.37 ^{#10}						<1	<1	<1	<1
Explosives	0.24#10						<0.5	<0.5	<0.5	<0.5
2,4-Dinitrotoluene 2,6-dinitrotoluene Nitrohenzane	0.049#10			:		-	<0.5 <1 <1	<0.5 <1 <1	<0.5 <1 <1	<0.5 <1
Nitrobenzene TPH >C5-C6 Alinhatics	8 to 63 ^{#3}			-40	-40	-40				
>C5-C6 Aliphatics >C6-C8 Aliphatics >C8-C10 Aliphatics	15,000*2 15.000*2			<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10
>C8-C10 Aliphatics >C10-C12 Aliphatics	300 ^{#2}			<10 <5	<10 <5	<10 <5	<10 <5	<10 <5	<10 <5	<10 <5
>C12-C16 Aliphatics >C16-C21 Aliphatics	300*2 300*2			<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10
>C16-C35 Aliphatics >C21-C35 Aliphatics	300*2			<20 <10	<20 <10	<20 <10	<20 <10	<20 <10	<20 <10	<20 <10
>C5-C35 Aliphatics >EC5-EC7 Aromatics	1#1	8#8		<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10
>EC7-EC8 Aromatics >EC8-EC10 Aromatics	700 ^{#2} 300 ^{#2}	74#6		<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10
>EC10-EC12 Aromatics >EC12-EC16 Aromatics	90 ^{#2}			<5 <10	<5 <10	<5 <10	<5 <10	<5 <10	<5 <10	<5 <10
>EC16-EC21 Aromatics >EC21-EC35 Aromatics	90 ^{#2} 90 ^{#2}			<10 <10	<10 <10	<10	<10	<10	<10 <10	<10 <10
>EC21-EC35 Aromatics >EC5-EC35 Aromatics >C5-C35 Aliphatics & Aromatics	90			<10 <10 <10	<10 <10	<10 <10	<10 <10 <10	<10 <10	<10 <10 <10	<10 <10 <10
TPH Hazard Indicies	1			<10 0	<10 0	<10 0	<10 0	<10 0	<10 0	<10 0
BETEX Benzene Tolvene	1#1	8 ^{#8}		<5	<5	<5	<0.5	<0.5	<0.5	<0.5
Toluene Ethylbenzene	700 ^{#3} 300 ^{#3}	74 ^{#6} 20 ^{#12}		<5 <5	<5 <5	<5 <5	<5 <1	<5 <1	<5 <1	<5 <1
Xylene (m & p) Xylene Total	500#3	30 ^{#12}		<5 <10	<5 <10	<5 <10	<2 <3	<2 <3	<2 <3	<2 <3
Xylene (o) Total BTEX	190*10			<5 <25	<5 <25	<5 <25	<1 <9.5	<1 <9.5	<1 <9.5	<1 <9.5
Oxygenates MTBE	1.800*15	260 ^{#13}		<5	<5	<5	<0.1	2.8	<0.2	<0.1
Solvents Isophorone	78*10						<0.5	<0.5	<0.5	<0.5
Metals		Ar. #F		<2.5	<2.5	-25	<0.5	<0.5	<0.5	<0.5
Arsenic (Filtered) Barium (Filtered)	10 ^{#1} 1.300 ^{#3}	25 ^{#6}		57	63	62 - 63	41	53	33	44
Beryllium (Filtered) Boron (Filtered)	12 ^{#3}	7.000#12		<0.5 132	<0.5 73	<0.5 <12	<0.5 49	<0.5 54	<0.5 178	<0.5 34
Cadmium (Filtered) Chromium (hexavalent)	5 ^{#1} 50 ^{#1}	0.2 ^{#8} 0.6 ^{#6}		<0.5 <6	<0.5 <6	<0.5 <6	<0.5 <6	<0.5 <6	<0.5 <6	<0.5 <6
Chromium (III+VI) (Filtered) Chromium (Trivalent) (Filtered)	50 ^{#1} 50 ^{#1}			6.2	6.8	<1.5 - 6.7 <6 - 7	6.3	5.4 <6	3.3 <6	<1.5 <6
Copper (Filtered) Ferrous Iron (Filtered)	2.000#1	3.76**6		<7 <20	<7 <20	<7 <20 - 20	<7 100	<7 260	<7 1,630	<7 150
Lead (Filtered)	10*1	1.3*8		<20 <5 <1	<20 <5 <1	<20 - 20 <5 <1	100 <5 <1	<5 <1	1,630 <5	150 <5 <1
Mercury (Filtered) Nickel (Filtered) Selenium (Filtered)	1 ^{#1} 20 ^{#1}	0.07 ^{#7} 8.6 ^{#8}		2	<2	5	<1 4	3	<1 8	<1 4
Selenium (Filtered) Vanadium (Filtered)	10 ^{#1} 86 ^{#10}	100#12		<3 <1.5	<1.5	<3 - 16 <1.5	<1.5	<3 <1.5	<3 <1.5	<3 <1.5
Zinc (Filtered) Organics	6.000#10	6.8 ^{#6}		12	6	6 - 7	<3	<3	10	6
Dissolved Organic Carbon (mg/L) Inorganics				<2	<2	<2	6	9	38	3
Sulphate (mg/L) Chloride (mg/L)	250 ^{#4} 250 ^{#1}			62.9 24.3	42.8 18.2	76.4 - 94.2 26.2 - 26.8	417.5 563.4	720.3 1,280	983.9 304.2	299.8 69.2
Ortho Phosphate as P (mg/L) Alkalinity (total) as CaCO3 (mg/L)				0.19 352	0.15 300	<0.03 274 - 276	0.12 346	<0.03 378	<0.03 612	<0.03 762
INDIAN CONTRACTOR				< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Nitrate (as N) (mg/L) Ammoniacal Nitrogen as N (mg/L) pH (Lab) (pH units)		21 (unionised ammonia) ^{#6}		0.42 7.63	0.27 7.4	0.06 7.28 - 7.31	0.06 6.95	0.09 6.83	0.87 6.97	0.05 7.19

Numbe	Number of	Minimum	Minimum	Maximum	Maximum	Average	Median	Standard	Number	Number of
4	0	<2 <4	ND ND	<2 <4	ND ND	4	4	0	4	0
4	0	<3 <3	ND ND	<3	ND ND	3	3	0	4	0
4	0	<3 <2	ND ND		ND ND	2	2	0	4	0
4	0	<2 <6	ND ND	<2 <6	ND ND	6	6	0	0	0
4	0	<2 <3	ND ND	<2 <3	ND ND	3	3	0	0	0
4	0	<2 <1	ND ND	<2 <1	ND ND	1	1	0		0
4	0	<2 <2	ND ND	<2 <2	ND ND	2	2	0		0
4	0	<2 <2	ND ND	<2 <2	ND ND	2	2	0		0
4	0	<2 <3	ND ND	<2 <3	ND ND	2	3	0		0
4	0	<1 <3	ND ND	<1 <3	ND ND	1	1	0	4	0
4	0	<3 <3	ND ND	<3 <3	ND ND	3	3	0	0	0
4	0	<3	ND	<3	ND	3	3	0	0	0
4	0	<3 <2	ND ND	<3 <2	ND ND	2	2	0	0	0
4	0	<3 <2	ND ND	<3 <2	ND ND	2	2	0	0	0
4	0 4	<8 1	ND 1	<8 1	ND 1	8 1	1	0		0
4	0	<2	ND	<2	ND	2	2	0		0
4	0	<2 <3	ND ND	<2 <3	ND ND	3	3	0		0
4	0	<3 <2	ND ND	<3 <2	ND ND	2	2	0		0
4	0	<3 <2	ND ND	<3 <2	ND ND	3	3	0	0	0
4	0	<3 <3	ND ND	<3 <3	ND ND	3	3	0	0	0
4	0	<5 <15.1	ND ND	<5 <15.1	ND ND	5 15	5 15.1	0	0	0
4	0	<6	ND	<6	ND	6	6	0	0	0
4	0	<12.1 <3	ND ND	<12.1 <3	ND ND	12 3	12.1	0	0	0
4	0	<3 <3	ND ND	<3 <3	ND ND	3	3	0	0	0
4	0	<0.1	ND					0		0
4	0	<3 <1	ND ND		ND ND	3	1	0	4	0
4	0	<1 <1	ND ND	<1 <1	ND ND	1	1	0	0	0
4	0	<1 <3	ND ND	<1 <3	ND ND	1 3	3	0	0	0
4	0	<3 <2	ND ND	<3 <2	ND ND	3	3	0	0	0
4	0	<2	ND ND	<2 <1	ND ND	2	2	0	0	0
4	0	<1 <4	ND	<1 <4	ND ND	4	4	0		0
4	0	<2	ND ND	<2	ND ND	2		0		0
4	0	<1 <3	ND ND	<1 <3	ND ND	3	3	0	0	0
4	0	<2	ND	<2	ND	2		0		0
4	0	<1 <0.5	ND ND	<1 <0.5	ND ND	1 0.5	0.5	0	0	0
4	0	<0.5 <0.5	ND ND	<0.5 <0.5	ND ND	0.5	0.5 0.5	0	4	0
4	0	<1 <1	ND ND	<1 <1	ND ND	1	1	0	4	0
4	0	<0.5	ND	<0.5	ND	0.5	0.5	0	4	0
4	0	<1.5 <0.5	ND ND	<1.5 <0.5	ND ND	1.5 0.5	0.5	0	0	0
4	0	<0.5 <0.5	ND ND	<0.5 <0.5	ND ND	0.5	0.5 0.5	0	4	0
4	0	<0.5 <1	ND ND	<0.5 <1	ND D	0.5	0.5	0	4	0
4	0	<1 <1.5	ND ND	<1 <1.5	ND ND	1.5	1.5	0		0
4	0	<0.5 <0.5	ND ND	<0.5	ND ND	0.5	0.5 0.5	0	0	0
	0	<1	ND		ND	1		0		0
4	0	<1	ND	<1	ND	1	1	0	0	0
4	0	<0.5 <0.5	ND ND	<0.5 <0.5	ND ND	0.5 0.5	0.5 0.5	0	0	0
4	0	<0.5 <1	ND ND	<0.5 <1	ND ND	0.5	0.5 1	0	0	0
4	0	<10 <1	ND ND	<10 <1	ND ND	10	10	0	0	0
4	0	<0.5	ND	<0.5	ND	0.5	0.5	0	0	0
4	0	<1 <0.5	ND ND	<1 <0.5	ND ND	0.5	0.5	0	0	0
4	0	<1	ND ND	<1	ND ND	1	1	0	0	0
4	0	<5	ND	<5	ND	5		0		0
4	0	<1	ND	<1	ND	1	1	0	4	0
4	0	<1 <1	ND ND	<1 <1	ND ND	1	1	0	0	0
4	0	<1.5 <1	ND ND	<1.5 <1	ND ND	1.5	1.5	0		0
4	0	<1	ND	<1	ND	1	1	0	0	0
4	0	<1 <1	ND ND	<1 <1	ND ND	1	1	0		0
4	0	<0.5 <0.5	ND ND	<0.5 <0.5	ND ND	0.5 0.5	0.5 0.5	0		0
4	0	<1 <0.5	ND ND	<1 <0.5	ND ND	1	1 0.5	0	4	0
4	0	<0.5	ND ND	<0.5	ND ND	0.5	0.5	0	0	0
4	0	<1 <1	ND	<1 <1	ND ND	1		0		0
4	0	<0.5	ND	<0.5	ND	0.5	0.5	0	4	0
4	0	<1	ND	<1	ND	1	1	0		0
4	0	<1 <1	ND ND	<1 <1	ND ND	1	1	0	4	0
4	0	<0.5	ND	<0.5	ND			0	0	0
4	0	<0.5 <1	ND ND	<0.5 <1	ND ND	0.5		0	4	0
4	0	<1	ND		ND	1		0		0
7	0	<10 <10	ND ND	<10 <10	ND ND	10 10	10 10	0		0
7 7	0	<10 <5	ND ND	<10 <5	ND ND	10	10	0	0	0
7	0	<10 <10	ND ND	<10 <10	ND ND	10 10	10	0	0	0
, 7 7	0	<20	ND ND ND	<10 <20 <10	ND ND ND	10 20 10	10 20 10	0	0	0
7	0	<10 <10	ND	<10	ND	10	10	0	0	0
7	0	<10 <10	ND ND	<10 <10	ND ND	10	10	0	0	0
7	0	<10 <5	ND ND	<10 <5	ND ND	10 5	10	0	0	0
7	0	<10 <10	ND ND	<10 <10	ND ND	10	10	0	0	0
7	0	<10 <10	ND ND		ND ND	10 10		0	0	0
7	0	<10		<10	ND	10				0
7	0	<0.5	ND	<5	ND	2.4	0.5	2.4	3	0
7 7	0	<5 <1	ND ND	<5 <5	ND ND	5	5	0 2.1	0	0
7	0	<2 <3	ND ND	<5 <10	ND ND	3.3	2	1.6	0	0
7	0	<1	ND	<5	ND	2.7	1	2.1	0	0
_	0	<9.5	ND		ND	16	9.5	8.3		0
	1									0
4	0							0		0
7	0 7	<2.5 33	ND 33	<2.5 63	ND 63	2.5 51	2.5 53	0 11	0	0
7	0	<0.5 <12	ND 34	<0.5 178	ND 178	0.5 76	0.5 54	0	0	0
7	0	<0.5 <6	ND ND	<0.5 <6	ND ND	0.5	0.5	0	7	0
7 7	6	<1.5	3.3	6.8 7	6.8 7	4.8	5.4	1.9	0	0
7	0	<6 <7	6 ND	<7	ND	6.2 7	7	0.39	7	0
7	0	<20 <5	ND ND	1630 <5	1630 ND	314 5	100	587 0	7	0
7	6	<1 <2	ND 2	<1 8	ND 8	4	4	0 2.1	0	0
7	2	<3	5 ND	16 <1.5		4.2 1.5	3 1.5	2.4 0	0	0
7	0	<1.5								
7	5	<3	6	12				3.4		3
7 7	0		6	12				13		0
7 7 7 7 7	0 5 4	<3 <2 42.8	3 42.8	12	38 983.9	8.9	299.8	13	0	0
7 7 7 7 7 7	7 7 3	<2 42.8 18.2 <0.03	42.8 18.2 0.12	38 983.9 1280 0.19	38 983.9 1280 0.19	373 327 0.083	299.8 69.2 0.03	13 363 467 0.069	0 4 3 0	0 4 3 0
7 7 7 7 7 7 7	7 7	<3 <2 42.8 18.2	6 3 42.8 18.2	38 983.9 1280	38 983.9 1280	373 327	3 299.8 69.2	13 363 467	0 4 3 0 0	0 4 3

AECOM Infrastructure & Environment UK Limited 5th Floor, 2 City Walk Leeds LS11 9AR United Kingdom

T: +44 (0)113 391 6800 aecom.com